Cargando…

A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid utilization

Food intake increases the activity of hepatic de novo lipogenesis, which mediates the conversion of glucose to fats for storage or utilization. In mice, this program follows a circadian rhythm that peaks with nocturnal feeding(1,2) and is repressed by Rev-erbα/β and an HDAC3-containing complex(3–5)...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Sihao, Brown, Jonathan D., Stanya, Kristopher J., Homan, Edwin, Leidl, Mathias, Inouye, Karen, Bhargava, Prerna, Gangl, Matthew R., Dai, Lingling, Hatano, Ben, Hotamisligil, Gökhan S., Saghatelian, Alan, Plutzky, Jorge, Lee, Chih-Hao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4141623/
https://www.ncbi.nlm.nih.gov/pubmed/24153306
http://dx.doi.org/10.1038/nature12710
_version_ 1782331666839109632
author Liu, Sihao
Brown, Jonathan D.
Stanya, Kristopher J.
Homan, Edwin
Leidl, Mathias
Inouye, Karen
Bhargava, Prerna
Gangl, Matthew R.
Dai, Lingling
Hatano, Ben
Hotamisligil, Gökhan S.
Saghatelian, Alan
Plutzky, Jorge
Lee, Chih-Hao
author_facet Liu, Sihao
Brown, Jonathan D.
Stanya, Kristopher J.
Homan, Edwin
Leidl, Mathias
Inouye, Karen
Bhargava, Prerna
Gangl, Matthew R.
Dai, Lingling
Hatano, Ben
Hotamisligil, Gökhan S.
Saghatelian, Alan
Plutzky, Jorge
Lee, Chih-Hao
author_sort Liu, Sihao
collection PubMed
description Food intake increases the activity of hepatic de novo lipogenesis, which mediates the conversion of glucose to fats for storage or utilization. In mice, this program follows a circadian rhythm that peaks with nocturnal feeding(1,2) and is repressed by Rev-erbα/β and an HDAC3-containing complex(3–5) during the day. The transcriptional activators controlling rhythmic lipid synthesis in the dark cycle remain poorly defined. Disturbances in hepatic lipogenesis are also associated with systemic metabolic phenotypes(6–8), suggesting that lipogenesis in the liver communicates with peripheral tissues to control energy substrate homeostasis. Here we identify a PPARδ-dependent de novo lipogenic pathway in the liver that modulates fat utilization by muscle via a circulating lipid. The nuclear receptor PPARδ controls diurnal expression of lipogenic genes in the dark/feeding cycle. Liver-specific PPARδ activation increases, while hepatocyte-Ppard deletion reduces, muscle fatty acid (FA) uptake. Unbiased metabolite profiling identifies PC(18:0/18:1), or 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), as a serum lipid regulated by diurnal hepatic PPARδ activity. PC(18:0/18:1) reduces postprandial lipid levels and increases FA utilization through muscle PPARα. High fat feeding diminishes rhythmic production of PC(18:0/18:1), whereas PC(18:0/18:1) administration in db/db mice improves metabolic homeostasis. These findings reveal an integrated regulatory circuit coupling lipid synthesis in the liver to energy utilization in muscle by coordinating the activity of two closely related nuclear receptors. These data implicate alterations in diurnal hepatic PPARδ-PC(18:0/18:1) signaling in metabolic disorders including obesity.
format Online
Article
Text
id pubmed-4141623
institution National Center for Biotechnology Information
language English
publishDate 2013
record_format MEDLINE/PubMed
spelling pubmed-41416232014-08-22 A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid utilization Liu, Sihao Brown, Jonathan D. Stanya, Kristopher J. Homan, Edwin Leidl, Mathias Inouye, Karen Bhargava, Prerna Gangl, Matthew R. Dai, Lingling Hatano, Ben Hotamisligil, Gökhan S. Saghatelian, Alan Plutzky, Jorge Lee, Chih-Hao Nature Article Food intake increases the activity of hepatic de novo lipogenesis, which mediates the conversion of glucose to fats for storage or utilization. In mice, this program follows a circadian rhythm that peaks with nocturnal feeding(1,2) and is repressed by Rev-erbα/β and an HDAC3-containing complex(3–5) during the day. The transcriptional activators controlling rhythmic lipid synthesis in the dark cycle remain poorly defined. Disturbances in hepatic lipogenesis are also associated with systemic metabolic phenotypes(6–8), suggesting that lipogenesis in the liver communicates with peripheral tissues to control energy substrate homeostasis. Here we identify a PPARδ-dependent de novo lipogenic pathway in the liver that modulates fat utilization by muscle via a circulating lipid. The nuclear receptor PPARδ controls diurnal expression of lipogenic genes in the dark/feeding cycle. Liver-specific PPARδ activation increases, while hepatocyte-Ppard deletion reduces, muscle fatty acid (FA) uptake. Unbiased metabolite profiling identifies PC(18:0/18:1), or 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), as a serum lipid regulated by diurnal hepatic PPARδ activity. PC(18:0/18:1) reduces postprandial lipid levels and increases FA utilization through muscle PPARα. High fat feeding diminishes rhythmic production of PC(18:0/18:1), whereas PC(18:0/18:1) administration in db/db mice improves metabolic homeostasis. These findings reveal an integrated regulatory circuit coupling lipid synthesis in the liver to energy utilization in muscle by coordinating the activity of two closely related nuclear receptors. These data implicate alterations in diurnal hepatic PPARδ-PC(18:0/18:1) signaling in metabolic disorders including obesity. 2013-10-24 /pmc/articles/PMC4141623/ /pubmed/24153306 http://dx.doi.org/10.1038/nature12710 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Liu, Sihao
Brown, Jonathan D.
Stanya, Kristopher J.
Homan, Edwin
Leidl, Mathias
Inouye, Karen
Bhargava, Prerna
Gangl, Matthew R.
Dai, Lingling
Hatano, Ben
Hotamisligil, Gökhan S.
Saghatelian, Alan
Plutzky, Jorge
Lee, Chih-Hao
A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid utilization
title A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid utilization
title_full A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid utilization
title_fullStr A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid utilization
title_full_unstemmed A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid utilization
title_short A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid utilization
title_sort diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid utilization
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4141623/
https://www.ncbi.nlm.nih.gov/pubmed/24153306
http://dx.doi.org/10.1038/nature12710
work_keys_str_mv AT liusihao adiurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT brownjonathand adiurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT stanyakristopherj adiurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT homanedwin adiurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT leidlmathias adiurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT inouyekaren adiurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT bhargavaprerna adiurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT ganglmatthewr adiurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT dailingling adiurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT hatanoben adiurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT hotamisligilgokhans adiurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT saghatelianalan adiurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT plutzkyjorge adiurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT leechihhao adiurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT liusihao diurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT brownjonathand diurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT stanyakristopherj diurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT homanedwin diurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT leidlmathias diurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT inouyekaren diurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT bhargavaprerna diurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT ganglmatthewr diurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT dailingling diurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT hatanoben diurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT hotamisligilgokhans diurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT saghatelianalan diurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT plutzkyjorge diurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization
AT leechihhao diurnalserumlipidintegrateshepaticlipogenesisandperipheralfattyacidutilization