Cargando…
Identification of miRNAs Differentially Expressed in Human Epilepsy with or without Granule Cell Pathology
The microRNAs (miRNAs) are small size non-coding RNAs that regulate expression of target mRNAs at post-transcriptional level. miRNAs differentially expressed under pathological conditions may help identifying mechanisms underlying the disease and may represent biomarkers with prognostic value. Howev...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4141756/ https://www.ncbi.nlm.nih.gov/pubmed/25148080 http://dx.doi.org/10.1371/journal.pone.0105521 |
_version_ | 1782331685976670208 |
---|---|
author | Zucchini, Silvia Marucci, Gianluca Paradiso, Beatrice Lanza, Giovanni Roncon, Paolo Cifelli, Pierangelo Ferracin, Manuela Giulioni, Marco Michelucci, Roberto Rubboli, Guido Simonato, Michele |
author_facet | Zucchini, Silvia Marucci, Gianluca Paradiso, Beatrice Lanza, Giovanni Roncon, Paolo Cifelli, Pierangelo Ferracin, Manuela Giulioni, Marco Michelucci, Roberto Rubboli, Guido Simonato, Michele |
author_sort | Zucchini, Silvia |
collection | PubMed |
description | The microRNAs (miRNAs) are small size non-coding RNAs that regulate expression of target mRNAs at post-transcriptional level. miRNAs differentially expressed under pathological conditions may help identifying mechanisms underlying the disease and may represent biomarkers with prognostic value. However, this kind of studies are difficult in the brain because of the cellular heterogeneity of the tissue and of the limited access to fresh tissue. Here, we focused on a pathology affecting specific cells in a subpopulation of epileptic brains (hippocampal granule cells), an approach that bypasses the above problems. All patients underwent surgery for intractable temporal lobe epilepsy and had hippocampal sclerosis associated with no granule cell pathology in half of the cases and with type-2 granule cell pathology (granule cell layer dispersion or bilamination) in the other half. The expression of more than 1000 miRNAs was examined in the laser-microdissected dentate granule cell layer. Twelve miRNAs were differentially expressed in the two groups. One of these, miR487a, was confirmed to be expressed at highly differential levels in an extended cohort of patients, using RT-qPCR. Bioinformatics searches and RT-qPCR verification identified ANTXR1 as a possible target of miR487a. ANTXR1 may be directly implicated in granule cell dispersion because it is an adhesion molecule that favors cell spreading. Thus, miR487a could be the first identified element of a miRNA signature that may be useful for prognostic evaluation of post-surgical epilepsy and may drive mechanistic studies leading to the identification of therapeutic targets. |
format | Online Article Text |
id | pubmed-4141756 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41417562014-08-25 Identification of miRNAs Differentially Expressed in Human Epilepsy with or without Granule Cell Pathology Zucchini, Silvia Marucci, Gianluca Paradiso, Beatrice Lanza, Giovanni Roncon, Paolo Cifelli, Pierangelo Ferracin, Manuela Giulioni, Marco Michelucci, Roberto Rubboli, Guido Simonato, Michele PLoS One Research Article The microRNAs (miRNAs) are small size non-coding RNAs that regulate expression of target mRNAs at post-transcriptional level. miRNAs differentially expressed under pathological conditions may help identifying mechanisms underlying the disease and may represent biomarkers with prognostic value. However, this kind of studies are difficult in the brain because of the cellular heterogeneity of the tissue and of the limited access to fresh tissue. Here, we focused on a pathology affecting specific cells in a subpopulation of epileptic brains (hippocampal granule cells), an approach that bypasses the above problems. All patients underwent surgery for intractable temporal lobe epilepsy and had hippocampal sclerosis associated with no granule cell pathology in half of the cases and with type-2 granule cell pathology (granule cell layer dispersion or bilamination) in the other half. The expression of more than 1000 miRNAs was examined in the laser-microdissected dentate granule cell layer. Twelve miRNAs were differentially expressed in the two groups. One of these, miR487a, was confirmed to be expressed at highly differential levels in an extended cohort of patients, using RT-qPCR. Bioinformatics searches and RT-qPCR verification identified ANTXR1 as a possible target of miR487a. ANTXR1 may be directly implicated in granule cell dispersion because it is an adhesion molecule that favors cell spreading. Thus, miR487a could be the first identified element of a miRNA signature that may be useful for prognostic evaluation of post-surgical epilepsy and may drive mechanistic studies leading to the identification of therapeutic targets. Public Library of Science 2014-08-22 /pmc/articles/PMC4141756/ /pubmed/25148080 http://dx.doi.org/10.1371/journal.pone.0105521 Text en © 2014 Zucchini et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Zucchini, Silvia Marucci, Gianluca Paradiso, Beatrice Lanza, Giovanni Roncon, Paolo Cifelli, Pierangelo Ferracin, Manuela Giulioni, Marco Michelucci, Roberto Rubboli, Guido Simonato, Michele Identification of miRNAs Differentially Expressed in Human Epilepsy with or without Granule Cell Pathology |
title | Identification of miRNAs Differentially Expressed in Human Epilepsy with or without Granule Cell Pathology |
title_full | Identification of miRNAs Differentially Expressed in Human Epilepsy with or without Granule Cell Pathology |
title_fullStr | Identification of miRNAs Differentially Expressed in Human Epilepsy with or without Granule Cell Pathology |
title_full_unstemmed | Identification of miRNAs Differentially Expressed in Human Epilepsy with or without Granule Cell Pathology |
title_short | Identification of miRNAs Differentially Expressed in Human Epilepsy with or without Granule Cell Pathology |
title_sort | identification of mirnas differentially expressed in human epilepsy with or without granule cell pathology |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4141756/ https://www.ncbi.nlm.nih.gov/pubmed/25148080 http://dx.doi.org/10.1371/journal.pone.0105521 |
work_keys_str_mv | AT zucchinisilvia identificationofmirnasdifferentiallyexpressedinhumanepilepsywithorwithoutgranulecellpathology AT maruccigianluca identificationofmirnasdifferentiallyexpressedinhumanepilepsywithorwithoutgranulecellpathology AT paradisobeatrice identificationofmirnasdifferentiallyexpressedinhumanepilepsywithorwithoutgranulecellpathology AT lanzagiovanni identificationofmirnasdifferentiallyexpressedinhumanepilepsywithorwithoutgranulecellpathology AT ronconpaolo identificationofmirnasdifferentiallyexpressedinhumanepilepsywithorwithoutgranulecellpathology AT cifellipierangelo identificationofmirnasdifferentiallyexpressedinhumanepilepsywithorwithoutgranulecellpathology AT ferracinmanuela identificationofmirnasdifferentiallyexpressedinhumanepilepsywithorwithoutgranulecellpathology AT giulionimarco identificationofmirnasdifferentiallyexpressedinhumanepilepsywithorwithoutgranulecellpathology AT michelucciroberto identificationofmirnasdifferentiallyexpressedinhumanepilepsywithorwithoutgranulecellpathology AT rubboliguido identificationofmirnasdifferentiallyexpressedinhumanepilepsywithorwithoutgranulecellpathology AT simonatomichele identificationofmirnasdifferentiallyexpressedinhumanepilepsywithorwithoutgranulecellpathology |