Cargando…
Regulation of the Expression of the Vibrio parahaemolyticus peuA Gene Encoding an Alternative Ferric Enterobactin Receptor
A pvsB-vctA-irgA triple deletion mutant of Vibrio parahaemolyticus can utilize enterobactin under iron-limiting conditions by inducing a previously undescribed receptor, PeuA (VPA0150), in response to extracellular alkaline pH and enterobactin. In silico analyses revealed the existence of a two-comp...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4141801/ https://www.ncbi.nlm.nih.gov/pubmed/25148374 http://dx.doi.org/10.1371/journal.pone.0105749 |
Sumario: | A pvsB-vctA-irgA triple deletion mutant of Vibrio parahaemolyticus can utilize enterobactin under iron-limiting conditions by inducing a previously undescribed receptor, PeuA (VPA0150), in response to extracellular alkaline pH and enterobactin. In silico analyses revealed the existence of a two-component regulatory system operon, peuRS, immediately upstream of peuA, which constitutes an operon with the TonB2 system genes. Both the peuRS and peuA-tonB2 operons were found to be upregulated under iron-limiting conditions in a ferric uptake regulator (Fur)-dependent manner. The involvement of peuA and peuRS in enterobactin utilization was analyzed by complementation experiments using deletion mutants. Primer extension analysis indicated that, under iron-limiting conditions, the transcription of peuA was initiated from the +1 site at pH 7.0 and from both the +1 and +39 sites at pH 8.0 in the presence of enterobactin. The +39 transcript was absent from the peuRS deletion mutant. Secondary structure prediction of their 5′-untranslated regions suggested that translation initiation is blocked in the +1 transcript, but not in the +39 transcript. Consistent with this, in vitro translation analysis demonstrated that production of PeuA was determined only by the +39 transcript. These studies establish a novel gene regulation mechanism in which the two-component regulatory system PeuRS enhances expression of the alternative +39 transcript that possesses non-inhibitory structure, allowing the peuA expression to be regulated at the translation stage. |
---|