Cargando…
Differential activity of rice protein disulfide isomerase family members for disulfide bond formation and reduction
Protein disulfide isomerases (PDIs), a family of thiol-disulfide oxidoreductases that are ubiquitous in all eukaryotes, are the principal catalysts for disulfide bond formation. Here, we investigated three rice (Oryza sativa) PDI family members (PDIL1;1, PDIL1;4, and PDIL2;3) and found that PDIL1;1...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4141933/ https://www.ncbi.nlm.nih.gov/pubmed/25161881 http://dx.doi.org/10.1016/j.fob.2014.07.007 |
Sumario: | Protein disulfide isomerases (PDIs), a family of thiol-disulfide oxidoreductases that are ubiquitous in all eukaryotes, are the principal catalysts for disulfide bond formation. Here, we investigated three rice (Oryza sativa) PDI family members (PDIL1;1, PDIL1;4, and PDIL2;3) and found that PDIL1;1 exhibited the highest catalytic activity for both disulfide bond formation and disulfide bond reduction. The activity of PDIL1;1-catalyzed disulfide bond reduction, in which two redox-active sites were involved, was enhanced by increasing the glutathione concentration. These results suggest that PDIL1;1 plays primary roles in both disulfide bond formation and disulfide bond reduction, which allow for redox control of protein quality and packaging. |
---|