Cargando…

A Variable Precision Attribute Reduction Approach in Multilabel Decision Tables

Owing to the high dimensionality of multilabel data, feature selection in multilabel learning will be necessary in order to reduce the redundant features and improve the performance of multilabel classification. Rough set theory, as a valid mathematical tool for data analysis, has been widely applie...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Hua, Li, Deyu, Zhai, Yanhui, Wang, Suge, Zhang, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142157/
https://www.ncbi.nlm.nih.gov/pubmed/25170521
http://dx.doi.org/10.1155/2014/359626
_version_ 1782331735392911360
author Li, Hua
Li, Deyu
Zhai, Yanhui
Wang, Suge
Zhang, Jing
author_facet Li, Hua
Li, Deyu
Zhai, Yanhui
Wang, Suge
Zhang, Jing
author_sort Li, Hua
collection PubMed
description Owing to the high dimensionality of multilabel data, feature selection in multilabel learning will be necessary in order to reduce the redundant features and improve the performance of multilabel classification. Rough set theory, as a valid mathematical tool for data analysis, has been widely applied to feature selection (also called attribute reduction). In this study, we propose a variable precision attribute reduct for multilabel data based on rough set theory, called δ-confidence reduct, which can correctly capture the uncertainty implied among labels. Furthermore, judgement theory and discernibility matrix associated with δ-confidence reduct are also introduced, from which we can obtain the approach to knowledge reduction in multilabel decision tables.
format Online
Article
Text
id pubmed-4142157
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-41421572014-08-28 A Variable Precision Attribute Reduction Approach in Multilabel Decision Tables Li, Hua Li, Deyu Zhai, Yanhui Wang, Suge Zhang, Jing ScientificWorldJournal Research Article Owing to the high dimensionality of multilabel data, feature selection in multilabel learning will be necessary in order to reduce the redundant features and improve the performance of multilabel classification. Rough set theory, as a valid mathematical tool for data analysis, has been widely applied to feature selection (also called attribute reduction). In this study, we propose a variable precision attribute reduct for multilabel data based on rough set theory, called δ-confidence reduct, which can correctly capture the uncertainty implied among labels. Furthermore, judgement theory and discernibility matrix associated with δ-confidence reduct are also introduced, from which we can obtain the approach to knowledge reduction in multilabel decision tables. Hindawi Publishing Corporation 2014 2014-08-06 /pmc/articles/PMC4142157/ /pubmed/25170521 http://dx.doi.org/10.1155/2014/359626 Text en Copyright © 2014 Hua Li et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Li, Hua
Li, Deyu
Zhai, Yanhui
Wang, Suge
Zhang, Jing
A Variable Precision Attribute Reduction Approach in Multilabel Decision Tables
title A Variable Precision Attribute Reduction Approach in Multilabel Decision Tables
title_full A Variable Precision Attribute Reduction Approach in Multilabel Decision Tables
title_fullStr A Variable Precision Attribute Reduction Approach in Multilabel Decision Tables
title_full_unstemmed A Variable Precision Attribute Reduction Approach in Multilabel Decision Tables
title_short A Variable Precision Attribute Reduction Approach in Multilabel Decision Tables
title_sort variable precision attribute reduction approach in multilabel decision tables
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142157/
https://www.ncbi.nlm.nih.gov/pubmed/25170521
http://dx.doi.org/10.1155/2014/359626
work_keys_str_mv AT lihua avariableprecisionattributereductionapproachinmultilabeldecisiontables
AT lideyu avariableprecisionattributereductionapproachinmultilabeldecisiontables
AT zhaiyanhui avariableprecisionattributereductionapproachinmultilabeldecisiontables
AT wangsuge avariableprecisionattributereductionapproachinmultilabeldecisiontables
AT zhangjing avariableprecisionattributereductionapproachinmultilabeldecisiontables
AT lihua variableprecisionattributereductionapproachinmultilabeldecisiontables
AT lideyu variableprecisionattributereductionapproachinmultilabeldecisiontables
AT zhaiyanhui variableprecisionattributereductionapproachinmultilabeldecisiontables
AT wangsuge variableprecisionattributereductionapproachinmultilabeldecisiontables
AT zhangjing variableprecisionattributereductionapproachinmultilabeldecisiontables