Cargando…
A Variable Precision Attribute Reduction Approach in Multilabel Decision Tables
Owing to the high dimensionality of multilabel data, feature selection in multilabel learning will be necessary in order to reduce the redundant features and improve the performance of multilabel classification. Rough set theory, as a valid mathematical tool for data analysis, has been widely applie...
Autores principales: | Li, Hua, Li, Deyu, Zhai, Yanhui, Wang, Suge, Zhang, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142157/ https://www.ncbi.nlm.nih.gov/pubmed/25170521 http://dx.doi.org/10.1155/2014/359626 |
Ejemplares similares
-
Analysis and Multilabel Classification of Quebec Court Decisions in the Domain of Housing Law
por: Salaün, Olivier, et al.
Publicado: (2020) -
An Ensemble Multilabel Classification for Disease Risk Prediction
por: Li, Runzhi, et al.
Publicado: (2017) -
Multilabel Image Annotation Based on Double-Layer PLSA Model
por: Zhang, Jing, et al.
Publicado: (2014) -
Quick Maximum Distribution Reduction in Inconsistent Decision Tables
por: Li, Baizhen, et al.
Publicado: (2020) -
An Accelerating Reduction Approach for Incomplete Decision Table Using Positive Approximation Set
por: Yan, Tao, et al.
Publicado: (2022)