Cargando…

Spatiotemporal Access Model Based on Reputation for the Sensing Layer of the IoT

Access control is a key technology in providing security in the Internet of Things (IoT). The mainstream security approach proposed for the sensing layer of the IoT concentrates only on authentication while ignoring the more general models. Unreliable communications and resource constraints make the...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Yunchuan, Yin, Lihua, Li, Chao, Qian, Junyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142184/
https://www.ncbi.nlm.nih.gov/pubmed/25177731
http://dx.doi.org/10.1155/2014/671038
Descripción
Sumario:Access control is a key technology in providing security in the Internet of Things (IoT). The mainstream security approach proposed for the sensing layer of the IoT concentrates only on authentication while ignoring the more general models. Unreliable communications and resource constraints make the traditional access control techniques barely meet the requirements of the sensing layer of the IoT. In this paper, we propose a model that combines space and time with reputation to control access to the information within the sensing layer of the IoT. This model is called spatiotemporal access control based on reputation (STRAC). STRAC uses a lattice-based approach to decrease the size of policy bases. To solve the problem caused by unreliable communications, we propose both nondeterministic authorizations and stochastic authorizations. To more precisely manage the reputation of nodes, we propose two new mechanisms to update the reputation of nodes. These new approaches are the authority-based update mechanism (AUM) and the election-based update mechanism (EUM). We show how the model checker UPPAAL can be used to analyze the spatiotemporal access control model of an application. Finally, we also implement a prototype system to demonstrate the efficiency of our model.