Cargando…
Design of Jetty Piles Using Artificial Neural Networks
To overcome the complication of jetty pile design process, artificial neural networks (ANN) are adopted. To generate the training samples for training ANN, finite element (FE) analysis was performed 50 times for 50 different design cases. The trained ANN was verified with another FE analysis case an...
Autores principales: | Lee, Yongjei, Lee, Sungchil, Bae, Hun-Kyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142307/ https://www.ncbi.nlm.nih.gov/pubmed/25177724 http://dx.doi.org/10.1155/2014/405401 |
Ejemplares similares
-
N-Jettiness as an event shape measure
por: Damgaard, David Froelund
Publicado: (2017) -
Zero-jettiness beam functions at N$^3$LO
por: Behring, Arnd
Publicado: (2022) -
Beam functions for $N$-jettiness at N$^3$LO in perturbative QCD
por: Baranowski, Daniel, et al.
Publicado: (2022) -
Design deep neural network architecture using a genetic algorithm for estimation of pile bearing capacity
por: Pham, Tuan Anh, et al.
Publicado: (2020) -
Measurement of the N-jettiness variables in the production of Z boson events with the CMS detector and performance of its electromagnetic calorimeter
por: Mijuskovic, Jelena
Publicado: (2022)