Cargando…
Using Cellular Automata for Parking Recommendations in Smart Environments
In this work, we propose an innovative adaptive recommendation mechanism for smart parking. The cognitive RF module will transmit the vehicle location information and the parking space requirements to the parking congestion computing center (PCCC) when the driver must find a parking space. Moreover,...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143308/ https://www.ncbi.nlm.nih.gov/pubmed/25153671 http://dx.doi.org/10.1371/journal.pone.0105973 |
Sumario: | In this work, we propose an innovative adaptive recommendation mechanism for smart parking. The cognitive RF module will transmit the vehicle location information and the parking space requirements to the parking congestion computing center (PCCC) when the driver must find a parking space. Moreover, for the parking spaces, we use a cellular automata (CA) model mechanism that can adjust to full and not full parking lot situations. Here, the PCCC can compute the nearest parking lot, the parking lot status and the current or opposite driving direction with the vehicle location information. By considering the driving direction, we can determine when the vehicles must turn around and thus reduce road congestion and speed up finding a parking space. The recommendation will be sent to the drivers through a wireless communication cognitive radio (CR) model after the computation and analysis by the PCCC. The current study evaluates the performance of this approach by conducting computer simulations. The simulation results show the strengths of the proposed smart parking mechanism in terms of avoiding increased congestion and decreasing the time to find a parking space. |
---|