Cargando…
Modulation of Biofilm-Formation in Salmonella enterica Serovar Typhimurium by the Periplasmic DsbA/DsbB Oxidoreductase System Requires the GGDEF-EAL Domain Protein STM3615
In Salmonella enterica serovar Typhimurium (S. Typhimurium), biofilm-formation is controlled by the cytoplasmic intracellular small-molecular second messenger cyclic 3′, 5′-di- guanosine monophosphate (c-di-GMP) through the activities of GGDEF and EAL domain proteins. Here we describe that deleting...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143323/ https://www.ncbi.nlm.nih.gov/pubmed/25153529 http://dx.doi.org/10.1371/journal.pone.0106095 |
_version_ | 1782331887438528512 |
---|---|
author | Anwar, Naeem Rouf, Syed Fazle Römling, Ute Rhen, Mikael |
author_facet | Anwar, Naeem Rouf, Syed Fazle Römling, Ute Rhen, Mikael |
author_sort | Anwar, Naeem |
collection | PubMed |
description | In Salmonella enterica serovar Typhimurium (S. Typhimurium), biofilm-formation is controlled by the cytoplasmic intracellular small-molecular second messenger cyclic 3′, 5′-di- guanosine monophosphate (c-di-GMP) through the activities of GGDEF and EAL domain proteins. Here we describe that deleting either dsbA or dsbB, respectively encoding a periplasmic protein disulfide oxidase and a cytoplasmic membrane disulfide oxidoreductase, resulted in increased biofilm-formation on solid medium. This increased biofilm-formation, defined as a red, dry and rough (rdar) colony morphotype, paralleled with enhanced expression of the biofilm master regulator CsgD and the biofilm-associated fimbrial subunit CsgA. Deleting csgD in either dsb mutant abrogated the enhanced biofilm-formation. Likewise, overexpression of the c-di-GMP phosphodiesterase YhjH, or mutationally inactivating the CsgD activator EAL-domain protein YdiV, reduced biofilm-formation in either of the dsb mutants. Intriguingly, deleting the GGDEF-EAL domain protein gene STM3615 (yhjK), previously not connected to rdar morphotype development, also abrogated the escalated rdar morphotype formation in dsb mutant backgrounds. Enhanced biofilm-formation in dsb mutants was furthermore annulled by exposure to the protein disulfide catalyst copper chloride. When analyzed for the effect of exogenous reducing stress on biofilm-formation, both dsb mutants initially showed an escalated rdar morphotype development that later dissolved to reveal a smooth mucoid colony morphotype. From these results we conclude that biofilm-development in S. Typhimurium is affected by periplasmic protein disulphide bond status through CsgD, and discuss the involvement of selected GGDEF/EAL domain protein(s) as signaling mediators. |
format | Online Article Text |
id | pubmed-4143323 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41433232014-08-27 Modulation of Biofilm-Formation in Salmonella enterica Serovar Typhimurium by the Periplasmic DsbA/DsbB Oxidoreductase System Requires the GGDEF-EAL Domain Protein STM3615 Anwar, Naeem Rouf, Syed Fazle Römling, Ute Rhen, Mikael PLoS One Research Article In Salmonella enterica serovar Typhimurium (S. Typhimurium), biofilm-formation is controlled by the cytoplasmic intracellular small-molecular second messenger cyclic 3′, 5′-di- guanosine monophosphate (c-di-GMP) through the activities of GGDEF and EAL domain proteins. Here we describe that deleting either dsbA or dsbB, respectively encoding a periplasmic protein disulfide oxidase and a cytoplasmic membrane disulfide oxidoreductase, resulted in increased biofilm-formation on solid medium. This increased biofilm-formation, defined as a red, dry and rough (rdar) colony morphotype, paralleled with enhanced expression of the biofilm master regulator CsgD and the biofilm-associated fimbrial subunit CsgA. Deleting csgD in either dsb mutant abrogated the enhanced biofilm-formation. Likewise, overexpression of the c-di-GMP phosphodiesterase YhjH, or mutationally inactivating the CsgD activator EAL-domain protein YdiV, reduced biofilm-formation in either of the dsb mutants. Intriguingly, deleting the GGDEF-EAL domain protein gene STM3615 (yhjK), previously not connected to rdar morphotype development, also abrogated the escalated rdar morphotype formation in dsb mutant backgrounds. Enhanced biofilm-formation in dsb mutants was furthermore annulled by exposure to the protein disulfide catalyst copper chloride. When analyzed for the effect of exogenous reducing stress on biofilm-formation, both dsb mutants initially showed an escalated rdar morphotype development that later dissolved to reveal a smooth mucoid colony morphotype. From these results we conclude that biofilm-development in S. Typhimurium is affected by periplasmic protein disulphide bond status through CsgD, and discuss the involvement of selected GGDEF/EAL domain protein(s) as signaling mediators. Public Library of Science 2014-08-25 /pmc/articles/PMC4143323/ /pubmed/25153529 http://dx.doi.org/10.1371/journal.pone.0106095 Text en © 2014 Anwar et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Anwar, Naeem Rouf, Syed Fazle Römling, Ute Rhen, Mikael Modulation of Biofilm-Formation in Salmonella enterica Serovar Typhimurium by the Periplasmic DsbA/DsbB Oxidoreductase System Requires the GGDEF-EAL Domain Protein STM3615 |
title | Modulation of Biofilm-Formation in Salmonella enterica Serovar Typhimurium by the Periplasmic DsbA/DsbB Oxidoreductase System Requires the GGDEF-EAL Domain Protein STM3615 |
title_full | Modulation of Biofilm-Formation in Salmonella enterica Serovar Typhimurium by the Periplasmic DsbA/DsbB Oxidoreductase System Requires the GGDEF-EAL Domain Protein STM3615 |
title_fullStr | Modulation of Biofilm-Formation in Salmonella enterica Serovar Typhimurium by the Periplasmic DsbA/DsbB Oxidoreductase System Requires the GGDEF-EAL Domain Protein STM3615 |
title_full_unstemmed | Modulation of Biofilm-Formation in Salmonella enterica Serovar Typhimurium by the Periplasmic DsbA/DsbB Oxidoreductase System Requires the GGDEF-EAL Domain Protein STM3615 |
title_short | Modulation of Biofilm-Formation in Salmonella enterica Serovar Typhimurium by the Periplasmic DsbA/DsbB Oxidoreductase System Requires the GGDEF-EAL Domain Protein STM3615 |
title_sort | modulation of biofilm-formation in salmonella enterica serovar typhimurium by the periplasmic dsba/dsbb oxidoreductase system requires the ggdef-eal domain protein stm3615 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143323/ https://www.ncbi.nlm.nih.gov/pubmed/25153529 http://dx.doi.org/10.1371/journal.pone.0106095 |
work_keys_str_mv | AT anwarnaeem modulationofbiofilmformationinsalmonellaentericaserovartyphimuriumbytheperiplasmicdsbadsbboxidoreductasesystemrequirestheggdefealdomainproteinstm3615 AT roufsyedfazle modulationofbiofilmformationinsalmonellaentericaserovartyphimuriumbytheperiplasmicdsbadsbboxidoreductasesystemrequirestheggdefealdomainproteinstm3615 AT romlingute modulationofbiofilmformationinsalmonellaentericaserovartyphimuriumbytheperiplasmicdsbadsbboxidoreductasesystemrequirestheggdefealdomainproteinstm3615 AT rhenmikael modulationofbiofilmformationinsalmonellaentericaserovartyphimuriumbytheperiplasmicdsbadsbboxidoreductasesystemrequirestheggdefealdomainproteinstm3615 |