Cargando…

A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening

We present an integrated approach that predicts and validates novel anti-cancer drug targets. We first built a classifier that integrates a variety of genomic and systematic datasets to prioritize drug targets specific for breast, pancreatic and ovarian cancer. We then devised strategies to inhibit...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeon, Jouhyun, Nim, Satra, Teyra, Joan, Datti, Alessandro, Wrana, Jeffrey L, Sidhu, Sachdev S, Moffat, Jason, Kim, Philip M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143549/
https://www.ncbi.nlm.nih.gov/pubmed/25165489
http://dx.doi.org/10.1186/s13073-014-0057-7
_version_ 1782331908412145664
author Jeon, Jouhyun
Nim, Satra
Teyra, Joan
Datti, Alessandro
Wrana, Jeffrey L
Sidhu, Sachdev S
Moffat, Jason
Kim, Philip M
author_facet Jeon, Jouhyun
Nim, Satra
Teyra, Joan
Datti, Alessandro
Wrana, Jeffrey L
Sidhu, Sachdev S
Moffat, Jason
Kim, Philip M
author_sort Jeon, Jouhyun
collection PubMed
description We present an integrated approach that predicts and validates novel anti-cancer drug targets. We first built a classifier that integrates a variety of genomic and systematic datasets to prioritize drug targets specific for breast, pancreatic and ovarian cancer. We then devised strategies to inhibit these anti-cancer drug targets and selected a set of targets that are amenable to inhibition by small molecules, antibodies and synthetic peptides. We validated the predicted drug targets by showing strong anti-proliferative effects of both synthetic peptide and small molecule inhibitors against our predicted targets. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13073-014-0057-7) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4143549
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-41435492014-08-28 A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening Jeon, Jouhyun Nim, Satra Teyra, Joan Datti, Alessandro Wrana, Jeffrey L Sidhu, Sachdev S Moffat, Jason Kim, Philip M Genome Med Method We present an integrated approach that predicts and validates novel anti-cancer drug targets. We first built a classifier that integrates a variety of genomic and systematic datasets to prioritize drug targets specific for breast, pancreatic and ovarian cancer. We then devised strategies to inhibit these anti-cancer drug targets and selected a set of targets that are amenable to inhibition by small molecules, antibodies and synthetic peptides. We validated the predicted drug targets by showing strong anti-proliferative effects of both synthetic peptide and small molecule inhibitors against our predicted targets. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13073-014-0057-7) contains supplementary material, which is available to authorized users. BioMed Central 2014-07-30 /pmc/articles/PMC4143549/ /pubmed/25165489 http://dx.doi.org/10.1186/s13073-014-0057-7 Text en © Jeon et al.; licensee BioMed Central 2014
spellingShingle Method
Jeon, Jouhyun
Nim, Satra
Teyra, Joan
Datti, Alessandro
Wrana, Jeffrey L
Sidhu, Sachdev S
Moffat, Jason
Kim, Philip M
A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening
title A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening
title_full A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening
title_fullStr A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening
title_full_unstemmed A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening
title_short A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening
title_sort systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143549/
https://www.ncbi.nlm.nih.gov/pubmed/25165489
http://dx.doi.org/10.1186/s13073-014-0057-7
work_keys_str_mv AT jeonjouhyun asystematicapproachtoidentifynovelcancerdrugtargetsusingmachinelearninginhibitordesignandhighthroughputscreening
AT nimsatra asystematicapproachtoidentifynovelcancerdrugtargetsusingmachinelearninginhibitordesignandhighthroughputscreening
AT teyrajoan asystematicapproachtoidentifynovelcancerdrugtargetsusingmachinelearninginhibitordesignandhighthroughputscreening
AT dattialessandro asystematicapproachtoidentifynovelcancerdrugtargetsusingmachinelearninginhibitordesignandhighthroughputscreening
AT wranajeffreyl asystematicapproachtoidentifynovelcancerdrugtargetsusingmachinelearninginhibitordesignandhighthroughputscreening
AT sidhusachdevs asystematicapproachtoidentifynovelcancerdrugtargetsusingmachinelearninginhibitordesignandhighthroughputscreening
AT moffatjason asystematicapproachtoidentifynovelcancerdrugtargetsusingmachinelearninginhibitordesignandhighthroughputscreening
AT kimphilipm asystematicapproachtoidentifynovelcancerdrugtargetsusingmachinelearninginhibitordesignandhighthroughputscreening
AT jeonjouhyun systematicapproachtoidentifynovelcancerdrugtargetsusingmachinelearninginhibitordesignandhighthroughputscreening
AT nimsatra systematicapproachtoidentifynovelcancerdrugtargetsusingmachinelearninginhibitordesignandhighthroughputscreening
AT teyrajoan systematicapproachtoidentifynovelcancerdrugtargetsusingmachinelearninginhibitordesignandhighthroughputscreening
AT dattialessandro systematicapproachtoidentifynovelcancerdrugtargetsusingmachinelearninginhibitordesignandhighthroughputscreening
AT wranajeffreyl systematicapproachtoidentifynovelcancerdrugtargetsusingmachinelearninginhibitordesignandhighthroughputscreening
AT sidhusachdevs systematicapproachtoidentifynovelcancerdrugtargetsusingmachinelearninginhibitordesignandhighthroughputscreening
AT moffatjason systematicapproachtoidentifynovelcancerdrugtargetsusingmachinelearninginhibitordesignandhighthroughputscreening
AT kimphilipm systematicapproachtoidentifynovelcancerdrugtargetsusingmachinelearninginhibitordesignandhighthroughputscreening