Cargando…
A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening
We present an integrated approach that predicts and validates novel anti-cancer drug targets. We first built a classifier that integrates a variety of genomic and systematic datasets to prioritize drug targets specific for breast, pancreatic and ovarian cancer. We then devised strategies to inhibit...
Autores principales: | Jeon, Jouhyun, Nim, Satra, Teyra, Joan, Datti, Alessandro, Wrana, Jeffrey L, Sidhu, Sachdev S, Moffat, Jason, Kim, Philip M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143549/ https://www.ncbi.nlm.nih.gov/pubmed/25165489 http://dx.doi.org/10.1186/s13073-014-0057-7 |
Ejemplares similares
-
Pooled screening for anti-proliferative inhibitors of protein-protein interactions
por: Nim, Satra, et al.
Publicado: (2016) -
A high-throughput pipeline for the production of synthetic antibodies for analysis of ribonucleoprotein complexes
por: Na, Hong, et al.
Publicado: (2016) -
PAT: predictor for structured units and its application for the optimization of target molecules for the generation of synthetic antibodies
por: Jeon, Jouhyun, et al.
Publicado: (2016) -
Application of an integrated physical and functional screening approach to identify inhibitors of the Wnt pathway
por: Miller, Bryan W, et al.
Publicado: (2009) -
High-throughput drug library screening identifies colchicine as a thyroid cancer inhibitor
por: Zhang, Le, et al.
Publicado: (2016)