Cargando…
A variance component-based gene burden test
We propose a novel variance component approach for the analysis of next-generation sequencing data. Our method is based on the detection of the proportion of the trait phenotypic variance that can be explained by the introduction of a new variance component that accounts for the local gene-specific...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143638/ https://www.ncbi.nlm.nih.gov/pubmed/25519388 http://dx.doi.org/10.1186/1753-6561-8-S1-S49 |
Sumario: | We propose a novel variance component approach for the analysis of next-generation sequencing data. Our method is based on the detection of the proportion of the trait phenotypic variance that can be explained by the introduction of a new variance component that accounts for the local gene-specific departure of the empirical kinship relationship matrix, estimated from single-nucleotide polymorphism (SNP) genotypes, from their theoretical expectation based on the genealogical information in the pedigree. We tested our method with simulated phenotypes and imputed SNP genotypes from the Genetic Analysis Workshop 18 data set. We observed considerable variation in the differences between theoretical and gene-specific kinship estimates that proved to be informative for our test and allowed us to detect the MAP4 causal gene at a genome-wide significance level. The distribution of our test statistic show no inflation under the null hypothesis and results from a random set of genes suggest that the detection of MAP4 is both sensitive and specific. The use of 2 different strategies for the selection of the SNPs used to derive the gene-specific empirical kinship relationship matrices provides us with suggestive evidence that our method is performing as an empirical test of linkage. |
---|