Cargando…
A dual-clustering framework for association screening with whole genome sequencing data and longitudinal traits
Current sequencing technology enables generation of whole genome sequencing data sets that contain a high density of rare variants, each of which is carried by, at most, 5% of the sampled subjects. Such variants are involved in the etiology of most common diseases in humans. These diseases can be st...
Autores principales: | Liu, Ying, Huang, ChienHsun, Hu, Inchi, Lo, Shaw-Hwa, Zheng, Tian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143709/ https://www.ncbi.nlm.nih.gov/pubmed/25519328 http://dx.doi.org/10.1186/1753-6561-8-S1-S47 |
Ejemplares similares
-
Correction: A dual clustering framework for association screening with whole genome sequencing data and longitudinal traits
por: Liu, Ying, et al.
Publicado: (2014) -
Association screening for genes with multiple potentially rare variants: an inverse-probability weighted clustering approach
por: Liu, Ying, et al.
Publicado: (2011) -
New insights into old methods for identifying causal rare variants
por: Wang, Haitian, et al.
Publicado: (2011) -
Discovering pure gene-environment interactions in blood pressure genome-wide association studies data: a two-step approach incorporating new statistics
por: Wang, Maggie Haitian, et al.
Publicado: (2014) -
Identifying influential regions in extremely rare variants using a fixed-bin approach
por: Agne, Michael, et al.
Publicado: (2011)