Cargando…
Testing optimally weighted combination of variants for hypertension
Testing rare variants directly is possible with next-generation sequencing technology. In this article, we propose a sliding-window-based optimal-weighted approach to test for the effects of both rare and common variants across the whole genome. We measured the genetic association between a disease...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143713/ https://www.ncbi.nlm.nih.gov/pubmed/25519394 http://dx.doi.org/10.1186/1753-6561-8-S1-S59 |
Sumario: | Testing rare variants directly is possible with next-generation sequencing technology. In this article, we propose a sliding-window-based optimal-weighted approach to test for the effects of both rare and common variants across the whole genome. We measured the genetic association between a disease and a combination of variants of a single-nucleotide polymorphism window using the newly developed tests TOW and VW-TOW and performed a sliding-window technique to detect disease-susceptible windows. By applying the new approach to unrelated individuals of Genetic Analysis Workshop 18 on replicate 1 chromosome 3, we detected 3 highly susceptible windows across chromosome 3 for diastolic blood pressure and identified 10 of 48,176 windows as the most promising for both diastolic and systolic blood pressure. Seven of 9 top variants influencing diastolic blood pressure and 8 of 9 top variants influencing systolic blood pressure were found in or close to our top 10 windows. |
---|