Cargando…
Mixed-effects models for joint modeling of sequence data in longitudinal studies
In this paper, we propose a novel mixed-effects model for longitudinal changes of systolic blood pressure (SBP) over time that can estimate the joint effect of multiple sequence variants on SBP after accounting for familial correlation and the time dependencies within individuals. First we carried o...
Autores principales: | Wu, Yan Yan, Briollais, Laurent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143749/ https://www.ncbi.nlm.nih.gov/pubmed/25519347 http://dx.doi.org/10.1186/1753-6561-8-S1-S92 |
Ejemplares similares
-
Multilevel modeling for the analysis of longitudinal blood pressure data in the Framingham Heart Study pedigrees
por: Briollais, Laurent, et al.
Publicado: (2003) -
Mixed-effects models for GAW18 longitudinal blood pressure data
por: Chung, Wonil, et al.
Publicado: (2014) -
Comparison of genotype- and haplotype-based approaches for fine-mapping of alcohol dependence using COGA data
por: Pinnaduwage, Dushanthi, et al.
Publicado: (2005) -
Analysis of baseline, average, and longitudinally measured blood pressure data using linear mixed models
por: Hossain, Ahmed, et al.
Publicado: (2014) -
A multi-level model for analyzing whole genome sequencing family data with longitudinal traits
por: Chen, Taoye, et al.
Publicado: (2014)