Cargando…

Kernel score statistic for dependent data

The kernel score statistic is a global covariance component test over a set of genetic markers. It provides a flexible modeling framework and does not collapse marker information. We generalize the kernel score statistic to allow for familial dependencies and to adjust for random confounder effects....

Descripción completa

Detalles Bibliográficos
Autores principales: Malzahn, Dörthe, Friedrichs, Stefanie, Rosenberger, Albert, Bickeböller, Heike
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143755/
https://www.ncbi.nlm.nih.gov/pubmed/25519324
http://dx.doi.org/10.1186/1753-6561-8-S1-S41
_version_ 1782331954047221760
author Malzahn, Dörthe
Friedrichs, Stefanie
Rosenberger, Albert
Bickeböller, Heike
author_facet Malzahn, Dörthe
Friedrichs, Stefanie
Rosenberger, Albert
Bickeböller, Heike
author_sort Malzahn, Dörthe
collection PubMed
description The kernel score statistic is a global covariance component test over a set of genetic markers. It provides a flexible modeling framework and does not collapse marker information. We generalize the kernel score statistic to allow for familial dependencies and to adjust for random confounder effects. With this extension, we adjust our analysis of real and simulated baseline systolic blood pressure for polygenic familial background. We find that the kernel score test gains appreciably in power through the use of sequencing compared to tag-single-nucleotide polymorphisms for very rare single nucleotide polymorphisms with <1% minor allele frequency.
format Online
Article
Text
id pubmed-4143755
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-41437552014-09-02 Kernel score statistic for dependent data Malzahn, Dörthe Friedrichs, Stefanie Rosenberger, Albert Bickeböller, Heike BMC Proc Proceedings The kernel score statistic is a global covariance component test over a set of genetic markers. It provides a flexible modeling framework and does not collapse marker information. We generalize the kernel score statistic to allow for familial dependencies and to adjust for random confounder effects. With this extension, we adjust our analysis of real and simulated baseline systolic blood pressure for polygenic familial background. We find that the kernel score test gains appreciably in power through the use of sequencing compared to tag-single-nucleotide polymorphisms for very rare single nucleotide polymorphisms with <1% minor allele frequency. BioMed Central 2014-06-17 /pmc/articles/PMC4143755/ /pubmed/25519324 http://dx.doi.org/10.1186/1753-6561-8-S1-S41 Text en Copyright © 2014 Malzahn et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Proceedings
Malzahn, Dörthe
Friedrichs, Stefanie
Rosenberger, Albert
Bickeböller, Heike
Kernel score statistic for dependent data
title Kernel score statistic for dependent data
title_full Kernel score statistic for dependent data
title_fullStr Kernel score statistic for dependent data
title_full_unstemmed Kernel score statistic for dependent data
title_short Kernel score statistic for dependent data
title_sort kernel score statistic for dependent data
topic Proceedings
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143755/
https://www.ncbi.nlm.nih.gov/pubmed/25519324
http://dx.doi.org/10.1186/1753-6561-8-S1-S41
work_keys_str_mv AT malzahndorthe kernelscorestatisticfordependentdata
AT friedrichsstefanie kernelscorestatisticfordependentdata
AT rosenbergeralbert kernelscorestatisticfordependentdata
AT bickebollerheike kernelscorestatisticfordependentdata