Cargando…
Kernel score statistic for dependent data
The kernel score statistic is a global covariance component test over a set of genetic markers. It provides a flexible modeling framework and does not collapse marker information. We generalize the kernel score statistic to allow for familial dependencies and to adjust for random confounder effects....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143755/ https://www.ncbi.nlm.nih.gov/pubmed/25519324 http://dx.doi.org/10.1186/1753-6561-8-S1-S41 |
_version_ | 1782331954047221760 |
---|---|
author | Malzahn, Dörthe Friedrichs, Stefanie Rosenberger, Albert Bickeböller, Heike |
author_facet | Malzahn, Dörthe Friedrichs, Stefanie Rosenberger, Albert Bickeböller, Heike |
author_sort | Malzahn, Dörthe |
collection | PubMed |
description | The kernel score statistic is a global covariance component test over a set of genetic markers. It provides a flexible modeling framework and does not collapse marker information. We generalize the kernel score statistic to allow for familial dependencies and to adjust for random confounder effects. With this extension, we adjust our analysis of real and simulated baseline systolic blood pressure for polygenic familial background. We find that the kernel score test gains appreciably in power through the use of sequencing compared to tag-single-nucleotide polymorphisms for very rare single nucleotide polymorphisms with <1% minor allele frequency. |
format | Online Article Text |
id | pubmed-4143755 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-41437552014-09-02 Kernel score statistic for dependent data Malzahn, Dörthe Friedrichs, Stefanie Rosenberger, Albert Bickeböller, Heike BMC Proc Proceedings The kernel score statistic is a global covariance component test over a set of genetic markers. It provides a flexible modeling framework and does not collapse marker information. We generalize the kernel score statistic to allow for familial dependencies and to adjust for random confounder effects. With this extension, we adjust our analysis of real and simulated baseline systolic blood pressure for polygenic familial background. We find that the kernel score test gains appreciably in power through the use of sequencing compared to tag-single-nucleotide polymorphisms for very rare single nucleotide polymorphisms with <1% minor allele frequency. BioMed Central 2014-06-17 /pmc/articles/PMC4143755/ /pubmed/25519324 http://dx.doi.org/10.1186/1753-6561-8-S1-S41 Text en Copyright © 2014 Malzahn et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Proceedings Malzahn, Dörthe Friedrichs, Stefanie Rosenberger, Albert Bickeböller, Heike Kernel score statistic for dependent data |
title | Kernel score statistic for dependent data |
title_full | Kernel score statistic for dependent data |
title_fullStr | Kernel score statistic for dependent data |
title_full_unstemmed | Kernel score statistic for dependent data |
title_short | Kernel score statistic for dependent data |
title_sort | kernel score statistic for dependent data |
topic | Proceedings |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143755/ https://www.ncbi.nlm.nih.gov/pubmed/25519324 http://dx.doi.org/10.1186/1753-6561-8-S1-S41 |
work_keys_str_mv | AT malzahndorthe kernelscorestatisticfordependentdata AT friedrichsstefanie kernelscorestatisticfordependentdata AT rosenbergeralbert kernelscorestatisticfordependentdata AT bickebollerheike kernelscorestatisticfordependentdata |