Cargando…
Kernel score statistic for dependent data
The kernel score statistic is a global covariance component test over a set of genetic markers. It provides a flexible modeling framework and does not collapse marker information. We generalize the kernel score statistic to allow for familial dependencies and to adjust for random confounder effects....
Autores principales: | Malzahn, Dörthe, Friedrichs, Stefanie, Rosenberger, Albert, Bickeböller, Heike |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143755/ https://www.ncbi.nlm.nih.gov/pubmed/25519324 http://dx.doi.org/10.1186/1753-6561-8-S1-S41 |
Ejemplares similares
-
Comparing strategies for combined testing of rare and common variants in whole sequence and genome-wide genotype data
por: Malzahn, Dörthe, et al.
Publicado: (2016) -
Relating drug response to epigenetic and genetic markers using a region-based kernel score test
por: Yasmeen, Summaira, et al.
Publicado: (2018) -
Tests for candidate-gene interaction for longitudinal quantitative traits measured in a large cohort
por: Malzahn, Dörthe, et al.
Publicado: (2009) -
Integration of a priori gene set information into genome-wide association studies
por: Sohns, Melanie, et al.
Publicado: (2009) -
Nonparametric longitudinal allele-sharing model
por: Kulle, Bettina, et al.
Publicado: (2003)