Cargando…

A goodness-of-fit association test for whole genome sequencing data

Although many genetic factors have been successfully identified for human diseases in genome-wide association studies, genes discovered to date only account for a small proportion of overall genetic contributions to many complex traits. Association studies have difficulty in detecting the remaining...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Li, Xuan, Jing, Wu, Zheyang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143767/
https://www.ncbi.nlm.nih.gov/pubmed/25519389
http://dx.doi.org/10.1186/1753-6561-8-S1-S51
Descripción
Sumario:Although many genetic factors have been successfully identified for human diseases in genome-wide association studies, genes discovered to date only account for a small proportion of overall genetic contributions to many complex traits. Association studies have difficulty in detecting the remaining true genetic variants that are either common variants with weak allelic effects, or rare variants that have strong allelic effects but are weakly associated at the population level. In this work, we applied a goodness-of-fit test for detecting sets of common and rare variants associated with quantitative or binary traits by using whole genome sequencing data. This test has been proved optimal for detecting weak and sparse signals in the literature, which fits the requirements for targeting the genetic components of missing heritability. Furthermore, this p value-combining method allows one to incorporate different data and/or research results for meta-analysis. The method was used to simultaneously analyse the whole genome sequencing and genome-wide association studies data of Genetic Analysis Workshop 18 for detecting true genetic variants. The results show that goodness-of-fit test is comparable or better than the influential sequence kernel association test in many cases.