Cargando…

Cell-Based Biosensor to Report DNA Damage in Micro- and Nanosystems

[Image: see text] Understanding how newly engineered micro- and nanoscale materials and systems that interact with cells impact cell physiology is crucial for the development and ultimate adoption of such technologies. Reports regarding the genotoxic impact of forces applied to cells in such systems...

Descripción completa

Detalles Bibliográficos
Autores principales: Fendyur, Anna, Varma, Sarvesh, Lo, Catherine T., Voldman, Joel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144749/
https://www.ncbi.nlm.nih.gov/pubmed/25001406
http://dx.doi.org/10.1021/ac501412c
_version_ 1782332071462567936
author Fendyur, Anna
Varma, Sarvesh
Lo, Catherine T.
Voldman, Joel
author_facet Fendyur, Anna
Varma, Sarvesh
Lo, Catherine T.
Voldman, Joel
author_sort Fendyur, Anna
collection PubMed
description [Image: see text] Understanding how newly engineered micro- and nanoscale materials and systems that interact with cells impact cell physiology is crucial for the development and ultimate adoption of such technologies. Reports regarding the genotoxic impact of forces applied to cells in such systems that can both directly or indirectly damage DNA emphasize the need for developing facile methods to assess how materials and technologies affect cell physiology. To address this need we have developed a TurboRFP-based DNA damage reporter cell line in NIH-3T3 cells that fluoresce to report genotoxic stress caused by a wide variety of agents, from chemical genotoxic agents to UV-C radiation. Our biosensor was successfully implemented in reporting the genotoxic impact of nanomaterials, demonstrating the ability to assess size dependent geno- and cyto-toxicity. The biosensor cells can be assayed in a high throughput, noninvasive manner, with no need for overly sophisticated equipment or additional reagents. We believe that this open-source biosensor is an important resource for the community of micro- and nanomaterials and systems designers and users who wish to evaluate the impact of systems and materials on cell physiology.
format Online
Article
Text
id pubmed-4144749
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-41447492015-07-07 Cell-Based Biosensor to Report DNA Damage in Micro- and Nanosystems Fendyur, Anna Varma, Sarvesh Lo, Catherine T. Voldman, Joel Anal Chem [Image: see text] Understanding how newly engineered micro- and nanoscale materials and systems that interact with cells impact cell physiology is crucial for the development and ultimate adoption of such technologies. Reports regarding the genotoxic impact of forces applied to cells in such systems that can both directly or indirectly damage DNA emphasize the need for developing facile methods to assess how materials and technologies affect cell physiology. To address this need we have developed a TurboRFP-based DNA damage reporter cell line in NIH-3T3 cells that fluoresce to report genotoxic stress caused by a wide variety of agents, from chemical genotoxic agents to UV-C radiation. Our biosensor was successfully implemented in reporting the genotoxic impact of nanomaterials, demonstrating the ability to assess size dependent geno- and cyto-toxicity. The biosensor cells can be assayed in a high throughput, noninvasive manner, with no need for overly sophisticated equipment or additional reagents. We believe that this open-source biosensor is an important resource for the community of micro- and nanomaterials and systems designers and users who wish to evaluate the impact of systems and materials on cell physiology. American Chemical Society 2014-07-07 2014-08-05 /pmc/articles/PMC4144749/ /pubmed/25001406 http://dx.doi.org/10.1021/ac501412c Text en Copyright © 2014 American Chemical Society Terms of Use (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html)
spellingShingle Fendyur, Anna
Varma, Sarvesh
Lo, Catherine T.
Voldman, Joel
Cell-Based Biosensor to Report DNA Damage in Micro- and Nanosystems
title Cell-Based Biosensor to Report DNA Damage in Micro- and Nanosystems
title_full Cell-Based Biosensor to Report DNA Damage in Micro- and Nanosystems
title_fullStr Cell-Based Biosensor to Report DNA Damage in Micro- and Nanosystems
title_full_unstemmed Cell-Based Biosensor to Report DNA Damage in Micro- and Nanosystems
title_short Cell-Based Biosensor to Report DNA Damage in Micro- and Nanosystems
title_sort cell-based biosensor to report dna damage in micro- and nanosystems
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144749/
https://www.ncbi.nlm.nih.gov/pubmed/25001406
http://dx.doi.org/10.1021/ac501412c
work_keys_str_mv AT fendyuranna cellbasedbiosensortoreportdnadamageinmicroandnanosystems
AT varmasarvesh cellbasedbiosensortoreportdnadamageinmicroandnanosystems
AT locatherinet cellbasedbiosensortoreportdnadamageinmicroandnanosystems
AT voldmanjoel cellbasedbiosensortoreportdnadamageinmicroandnanosystems