Cargando…

Cortico-Cortical Interactions Influence Binocularity of the Primary Visual Cortex of Adult Mice

Electrophysiological studies have revealed that a large proportion of the mouse primary visual cortex (V1) receives input also from the ipsilateral eye. This is surprising as most optic nerve fibers cross at the optic chiasm in mice. Inactivating V1 of one hemisphere has recently demonstrated a stro...

Descripción completa

Detalles Bibliográficos
Autores principales: Dehmel, Susanne, Löwel, Siegrid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144898/
https://www.ncbi.nlm.nih.gov/pubmed/25157503
http://dx.doi.org/10.1371/journal.pone.0105745
Descripción
Sumario:Electrophysiological studies have revealed that a large proportion of the mouse primary visual cortex (V1) receives input also from the ipsilateral eye. This is surprising as most optic nerve fibers cross at the optic chiasm in mice. Inactivating V1 of one hemisphere has recently demonstrated a strong contribution of one hemisphere's activity on binocularity of single units and visually evoked potentials of V1 in the other hemisphere of young rats and of single units in young adult mice. Here we used intrinsic signal optical imaging to quantitatively study the influence of cortico-cortical connections on the magnitude of neuronal activation in the entire binocular zone of adult mouse V1. We simultaneously measured V1-activity of both hemispheres in adult C57BL/6J mice before and after blocking sensory-driven activity in one hemisphere with muscimol. In V1 contralateral to the inactivation, ipsilateral eye evoked activity was reduced by on average 18% while contralateral eye evoked activity did not change. Our results clearly show that cortico-cortical interactions exert a global amplification of ipsilateral eye evoked activity in adult mouse V1.