Cargando…

The Effects of Short-Term Synaptic Depression at Thalamocortical Synapses on Orientation Tuning in Cat V1

We examine the effects of short-term synaptic depression on the orientation tuning of the LGN input to simple cells in cat primary visual cortex (V1). The total LGN input has an untuned component as well as a tuned component, both of which grow with stimulus contrast. The untuned component is not vi...

Descripción completa

Detalles Bibliográficos
Autores principales: Cimenser, Aylin, Miller, Kenneth D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144965/
https://www.ncbi.nlm.nih.gov/pubmed/25157879
http://dx.doi.org/10.1371/journal.pone.0106046
_version_ 1782332109596131328
author Cimenser, Aylin
Miller, Kenneth D.
author_facet Cimenser, Aylin
Miller, Kenneth D.
author_sort Cimenser, Aylin
collection PubMed
description We examine the effects of short-term synaptic depression on the orientation tuning of the LGN input to simple cells in cat primary visual cortex (V1). The total LGN input has an untuned component as well as a tuned component, both of which grow with stimulus contrast. The untuned component is not visible in the firing rate responses of the simple cells. The suppression of the contribution of the untuned input component to firing rate responses is key to establishing orientation selectivity and its invariance with stimulus contrast. It has been argued that synaptic depression of LGN inputs could contribute to the selective suppression of the untuned component and thus contribute to the tuning observed in simple cells. We examine this using a model fit to the depression observed at thalamocortical synapses in-vivo, and compare this to an earlier model fit based on in-vitro observations. We examine the tuning of both the conductance and the firing rate induced in simple cells by the net LGN input. We find that depression causes minimal suppression of the untuned component. The primary effect of depression is to cause the contrast response curve to saturate at lower contrasts without differentially affecting the tuned vs. untuned components. This effect is slightly weaker for in-vivo vs. in-vitro parameters. Thus, synaptic depression of LGN inputs does not appreciably contribute to the orientation tuning of V1 simple cells.
format Online
Article
Text
id pubmed-4144965
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-41449652014-08-29 The Effects of Short-Term Synaptic Depression at Thalamocortical Synapses on Orientation Tuning in Cat V1 Cimenser, Aylin Miller, Kenneth D. PLoS One Research Article We examine the effects of short-term synaptic depression on the orientation tuning of the LGN input to simple cells in cat primary visual cortex (V1). The total LGN input has an untuned component as well as a tuned component, both of which grow with stimulus contrast. The untuned component is not visible in the firing rate responses of the simple cells. The suppression of the contribution of the untuned input component to firing rate responses is key to establishing orientation selectivity and its invariance with stimulus contrast. It has been argued that synaptic depression of LGN inputs could contribute to the selective suppression of the untuned component and thus contribute to the tuning observed in simple cells. We examine this using a model fit to the depression observed at thalamocortical synapses in-vivo, and compare this to an earlier model fit based on in-vitro observations. We examine the tuning of both the conductance and the firing rate induced in simple cells by the net LGN input. We find that depression causes minimal suppression of the untuned component. The primary effect of depression is to cause the contrast response curve to saturate at lower contrasts without differentially affecting the tuned vs. untuned components. This effect is slightly weaker for in-vivo vs. in-vitro parameters. Thus, synaptic depression of LGN inputs does not appreciably contribute to the orientation tuning of V1 simple cells. Public Library of Science 2014-08-26 /pmc/articles/PMC4144965/ /pubmed/25157879 http://dx.doi.org/10.1371/journal.pone.0106046 Text en © 2014 Cimenser, Miller http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Cimenser, Aylin
Miller, Kenneth D.
The Effects of Short-Term Synaptic Depression at Thalamocortical Synapses on Orientation Tuning in Cat V1
title The Effects of Short-Term Synaptic Depression at Thalamocortical Synapses on Orientation Tuning in Cat V1
title_full The Effects of Short-Term Synaptic Depression at Thalamocortical Synapses on Orientation Tuning in Cat V1
title_fullStr The Effects of Short-Term Synaptic Depression at Thalamocortical Synapses on Orientation Tuning in Cat V1
title_full_unstemmed The Effects of Short-Term Synaptic Depression at Thalamocortical Synapses on Orientation Tuning in Cat V1
title_short The Effects of Short-Term Synaptic Depression at Thalamocortical Synapses on Orientation Tuning in Cat V1
title_sort effects of short-term synaptic depression at thalamocortical synapses on orientation tuning in cat v1
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144965/
https://www.ncbi.nlm.nih.gov/pubmed/25157879
http://dx.doi.org/10.1371/journal.pone.0106046
work_keys_str_mv AT cimenseraylin theeffectsofshorttermsynapticdepressionatthalamocorticalsynapsesonorientationtuningincatv1
AT millerkennethd theeffectsofshorttermsynapticdepressionatthalamocorticalsynapsesonorientationtuningincatv1
AT cimenseraylin effectsofshorttermsynapticdepressionatthalamocorticalsynapsesonorientationtuningincatv1
AT millerkennethd effectsofshorttermsynapticdepressionatthalamocorticalsynapsesonorientationtuningincatv1