Cargando…

Nuclease Delivery: Versatile Functions of SLX4/FANCP in Genome Maintenance

As a scaffold, SLX4/FANCP interacts with multiple proteins involved in genome integrity. Although not having recognizable catalytic domains, SLX4 participates in diverse genome maintenance pathways by delivering nucleases where they are needed, and promoting their cooperative execution to prevent ge...

Descripción completa

Detalles Bibliográficos
Autor principal: Kim, Yonghwan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society for Molecular and Cellular Biology 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145367/
https://www.ncbi.nlm.nih.gov/pubmed/24938228
http://dx.doi.org/10.14348/molcells.2014.0118
Descripción
Sumario:As a scaffold, SLX4/FANCP interacts with multiple proteins involved in genome integrity. Although not having recognizable catalytic domains, SLX4 participates in diverse genome maintenance pathways by delivering nucleases where they are needed, and promoting their cooperative execution to prevent genomic instabilities. Physiological importance of SLX4 is emphasized by the identification of causative mutations of SLX4 genes in patients diagnosed with Fanconi anemia (FA), a rare recessive genetic disorder characterized by genomic instability and predisposition to cancers. Recent progress in understanding functional roles of SLX4 has greatly expanded our knowledge in the repair of DNA interstrand crosslinks (ICLs), Holliday junction (HJ) resolution, telomere homeostasis and regulation of DNA damage response induced by replication stress. Here, these diverse functions of SLX4 are reviewed in detail.