Cargando…
Prediction of S-Nitrosylation Modification Sites Based on Kernel Sparse Representation Classification and mRMR Algorithm
Protein S-nitrosylation plays a very important role in a wide variety of cellular biological activities. Hitherto, accurate prediction of S-nitrosylation sites is still of great challenge. In this paper, we presented a framework to computationally predict S-nitrosylation sites based on kernel sparse...
Autores principales: | Huang, Guohua, Lu, Lin, Feng, Kaiyan, Zhao, Jun, Zhang, Yuchao, Xu, Yaochen, Zhang, Ning, Li, Bi-Qing, Huang, Weiping, Cai, Yu-Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145740/ https://www.ncbi.nlm.nih.gov/pubmed/25184139 http://dx.doi.org/10.1155/2014/438341 |
Ejemplares similares
-
Gene selection algorithm by combining reliefF and mRMR
por: Zhang, Yi, et al.
Publicado: (2008) -
Prediction of Protein Modification Sites of Pyrrolidone Carboxylic Acid Using mRMR Feature Selection and Analysis
por: Zheng, Lu-Lu, et al.
Publicado: (2011) -
Prediction of Protein Domain with mRMR Feature Selection and Analysis
por: Li, Bi-Qing, et al.
Publicado: (2012) -
Prediction of Protein-Protein Interaction Sites by Random Forest Algorithm with mRMR and IFS
por: Li, Bi-Qing, et al.
Publicado: (2012) -
Predict and Analyze Protein Glycation Sites with the mRMR and IFS Methods
por: Liu, Yan, et al.
Publicado: (2015)