Cargando…

What is the new target inhibiting the progression of Alzheimer's disease

To stop the progression of Alzheimer's disease in the early stage, it is necessary to identify new therapeutic targets. We examined striatal-enriched phosphatase 61 expression in the brain tissues of 12-month-old APPswe/PSEN1dE9 transgenic mice. Immunohistochemistry showed that al-enriched phos...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Lin, Yang, Jing, Cao, Yunpeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145903/
https://www.ncbi.nlm.nih.gov/pubmed/25206502
http://dx.doi.org/10.3969/j.issn.1673-5374.2013.21.002
Descripción
Sumario:To stop the progression of Alzheimer's disease in the early stage, it is necessary to identify new therapeutic targets. We examined striatal-enriched phosphatase 61 expression in the brain tissues of 12-month-old APPswe/PSEN1dE9 transgenic mice. Immunohistochemistry showed that al-enriched phosphatase 61 protein expression was significantly increased but phosphorylated N-methyl-D-aspartate receptor 2B levels were significantly decreased in the cortex and hippocampus of APPswe/PSEN1dE9 transgenic mice. Western blotting of a cell model of Alzheimer's disease consisting of amyloid-beta peptide (1–42)-treated C57BL/6 mouse cortical neurons in vitro showed that valeric acid (AP5), an N-methyl-D-aspartate receptor antagonist, significantly inhibited amyloid-beta 1–42-induced increased activity of striatal-enriched phosphatase 61. In addition, the phosphorylation of N-methyl-D-aspartate receptor 2B at Tyr1472 was impaired in amyloid-beta 1–42-treated cortical neurons, but knockdown of striatal-enriched phosphatase 61 enhanced the phosphorylation of N-methyl-D-aspartate receptor 2B. Collectively, these findings indicate that striatal-enriched phosphatase 61 can disturb N-methyl-D-aspartate receptor transport and inhibit the progression of learning and study disturbances induced by Alzheimer's disease. Thus, al-enriched phosphatase 61 may represent a new target for inhibiting the progression of Alzheimer's disease.