Cargando…
Arg-Phe-amide-related peptides influence gonadotropin-releasing hormone neurons
The hypothalamic Arg-Phe-amide-related peptides, gonadotropin-inhibitory hormone and orthologous mammalian peptides of Arg-Phe-amide, may be important regulators of the hypothalamus-pituitary-gonadal reproductive axis. These peptides may modulate the effects of kisspeptins because they are presently...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145918/ https://www.ncbi.nlm.nih.gov/pubmed/25206468 http://dx.doi.org/10.3969/j.issn.1673-5374.2013.18.009 |
Sumario: | The hypothalamic Arg-Phe-amide-related peptides, gonadotropin-inhibitory hormone and orthologous mammalian peptides of Arg-Phe-amide, may be important regulators of the hypothalamus-pituitary-gonadal reproductive axis. These peptides may modulate the effects of kisspeptins because they are presently recognized as the most potent activators of the hypothalamus-pituitary-gonadal axis. However, their effects on gonadotropin-releasing hormone neurons have not been investigated. In the current study, the GT1–7 cell line-expressing gonadotropin-releasing hormone was used as a model to explore the effects of Arg-Pheamide-related peptides on kisspeptin activation. Intracellular calcium concentration was quantified using the calcium-sensitive dye, fura-2 acetoxymethyl ester. Gonadotropin-releasing hormone released into the medium was detected via enzyme-linked immunosorbent assay. Results showed that 100 nmol/L kisspeptin-10 significantly increased gonadotropin-releasing hormone levels (at 120 minutes of exposure) and intracellular calcium concentrations. Co-treatment of kisspeptin with 1 μmol/L gonadotropin-inhibitory hormone or 1 μmol/L Arg-Phe-amide-related peptide-1 significantly attenuated levels of kisspeptin-induced gonadotropin-releasing hormone but did not affect kisspeptin-induced elevations of intracellular calcium concentration. Overall, the results suggest that gonadotropin-inhibitory hormone and Arg-Phe-amide-related peptide-1 may have inhibitory effects on kisspeptin-activated gonadotropin-releasing hormone neurons independent of the calcium signaling pathway. |
---|