Cargando…

Thioperamide treats neonatal hypoxic-ischemic encephalopathy by postsynaptic H1 receptors

Thioperamide, a selective histamine H3 receptor antagonist, can increase histamine content in the brain, improve brain edema, and exert a neuroprotective effect. This study aimed to examine the mechanism of action of thioperamide during brain edema in a rat model of neonatal hypoxic-ischemic encepha...

Descripción completa

Detalles Bibliográficos
Autores principales: Jia, Feiyong, Du, Lin, Hao, Yunpeng, Liu, Shicheng, Li, Ning, Jiang, Huiyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145950/
https://www.ncbi.nlm.nih.gov/pubmed/25206478
http://dx.doi.org/10.3969/j.issn.1673-5374.2013.19.009
Descripción
Sumario:Thioperamide, a selective histamine H3 receptor antagonist, can increase histamine content in the brain, improve brain edema, and exert a neuroprotective effect. This study aimed to examine the mechanism of action of thioperamide during brain edema in a rat model of neonatal hypoxic-ischemic encephalopathy. Our results showed that thioperamide significantly decreased brain water content and malondialdehyde levels, while significantly increased histamine levels and superoxide dismutase activity in the hippocampus. This evidence demonstrates that thioperamide could prevent oxidative damage and attenuate brain edema following neonatal hypoxic-ischemic encephalolopathy. We further observed that changes in the above indexes occurred after combined treatment of thioperamide with the H1 receptor antagonist, pyrilamine, and the H2 receptor antagonist, tidine. Experimental findings indicated that pyrilamine reversed the effects of thioperamide; however, cimetidine had no significant influence on the effects of thioperamide. Our present findings suggest that thioperamide can increase brain histamine content and attenuate brain edema and oxidative damage by acting in combination with postsynaptic H1 receptors in a rat model of neonatal ic-ischemic encephalopathy.