Cargando…

Changes of hypoxia-inducible factor-1 signaling and the effect of cilostazol in chronic cerebral ischemia

Hypoxia-inducible factor-1 and its specific target gene heme oxygenase-1, are involved in acute cerebral ischemia. However, very few studies have examined in detail the changes in the hypoxia-inducible factor-1/heme oxygenase-1 signaling pathway in chronic cerebral ischemia. In this study, a rat mod...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Han, Wei, Aixuan, He, Jinting, Yu, Ming, Mang, Jing, Xu, Zhongxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145952/
https://www.ncbi.nlm.nih.gov/pubmed/25206477
http://dx.doi.org/10.3969/j.issn.1673-5374.2013.19.008
Descripción
Sumario:Hypoxia-inducible factor-1 and its specific target gene heme oxygenase-1, are involved in acute cerebral ischemia. However, very few studies have examined in detail the changes in the hypoxia-inducible factor-1/heme oxygenase-1 signaling pathway in chronic cerebral ischemia. In this study, a rat model of chronic cerebral ischemia was established by permanent bilateral common carotid artery occlusion, and these rats were treated with intragastric cilostazol (30 mg/kg) for 9 weeks. Morris water maze results showed that cognitive impairment gradually worsened as the cerebral ischemia proceeded. Immunohistochemistry, semi-quantitative PCR and western blot analysis showed that hypoxia-inducible factor-1α and heme oxygenase-1 expression levels increased after chronic cerebral ischemia, with hypoxia-inducible factor-1α expression peaking at 3 weeks and heme oxygenase-1 expression peaking at 6 weeks. These results suggest that the elevated levels of hypoxia-inducible factor-1α may upregulate heme oxygenase-1 expression following chronic cerebral ischemia and that the hypoxia-inducible factor-1/heme oxygenase-1 signaling pathway is involved in the development of cognitive impairment induced by chronic cerebral ischemia. Cilostazol treatment alleviated the cognitive impairment in rats with chronic cerebral ischemia, decreased hypoxia-inducible factor-1α and heme oxygenase-1 expression levels, and reduced apoptosis in the frontal cortex. These findings demonstrate that cilostazol can protect against cognitive impairment induced by chronic cerebral ischemic injury through an anti-apoptotic mechanism.