Cargando…
Wharton's jelly mesenchymal stem cells differentiate into retinal progenitor cells
Human Wharton's jelly mesenchymal stem cells were isolated from fetal umbilical cord. Cells were cultured in serum-free neural stem cell-conditioned medium or neural stem cell-conditioned medium supplemented with Dkk-1, a Wnt/β catenin pathway antagonist, and LeftyA, a Nodal signaling pathway a...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145957/ https://www.ncbi.nlm.nih.gov/pubmed/25206475 http://dx.doi.org/10.3969/j.issn.1673-5374.2013.19.006 |
Sumario: | Human Wharton's jelly mesenchymal stem cells were isolated from fetal umbilical cord. Cells were cultured in serum-free neural stem cell-conditioned medium or neural stem cell-conditioned medium supplemented with Dkk-1, a Wnt/β catenin pathway antagonist, and LeftyA, a Nodal signaling pathway antagonist to induce differentiation into retinal progenitor cells. Inverted microscopy showed that after induction, the spindle-shaped or fibroblast-like Wharton's jelly mesenchymal stem cells changed into bulbous cells with numerous processes. Immunofluorescent cytochemical ing and reverse-transcription PCR showed positive expression of retinal progenitor cell markers, Pax6 and Rx, as well as weakly down-regulated nestin expression. These results demonstrate that Wharton's jelly mesenchymal stem cells are capable of differentiating into retinal progenitor cells in vitro. |
---|