Cargando…

Wharton's jelly mesenchymal stem cells differentiate into retinal progenitor cells

Human Wharton's jelly mesenchymal stem cells were isolated from fetal umbilical cord. Cells were cultured in serum-free neural stem cell-conditioned medium or neural stem cell-conditioned medium supplemented with Dkk-1, a Wnt/β catenin pathway antagonist, and LeftyA, a Nodal signaling pathway a...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Ying, Liang, Jun, Cui, Hongping, Wang, Xinmei, Rong, Hua, Shao, Bin, Cui, Hao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145957/
https://www.ncbi.nlm.nih.gov/pubmed/25206475
http://dx.doi.org/10.3969/j.issn.1673-5374.2013.19.006
Descripción
Sumario:Human Wharton's jelly mesenchymal stem cells were isolated from fetal umbilical cord. Cells were cultured in serum-free neural stem cell-conditioned medium or neural stem cell-conditioned medium supplemented with Dkk-1, a Wnt/β catenin pathway antagonist, and LeftyA, a Nodal signaling pathway antagonist to induce differentiation into retinal progenitor cells. Inverted microscopy showed that after induction, the spindle-shaped or fibroblast-like Wharton's jelly mesenchymal stem cells changed into bulbous cells with numerous processes. Immunofluorescent cytochemical ing and reverse-transcription PCR showed positive expression of retinal progenitor cell markers, Pax6 and Rx, as well as weakly down-regulated nestin expression. These results demonstrate that Wharton's jelly mesenchymal stem cells are capable of differentiating into retinal progenitor cells in vitro.