Cargando…

Baicalin inhibits colistin sulfate-induced apoptosis of PC12 cells

Baicalin, a type of flavonoid extracted from the dried root of Scutellaria baicalensis georgi, has been shown to effectively inhibit cell apoptosis. Therefore, we assumed that baicalin would suppress co-listin sulfate-induced neuronal apoptosis. PC12 cells exposed to colistin sulfate (62.5–500 μg/mL...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Hong, Lv, Pengfei, Li, Jichang, Wang, Hongjun, Zhou, Tiezhong, Liu, Yingzi, Lin, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146026/
https://www.ncbi.nlm.nih.gov/pubmed/25206570
http://dx.doi.org/10.3969/j.issn.1673-5374.2013.28.001
Descripción
Sumario:Baicalin, a type of flavonoid extracted from the dried root of Scutellaria baicalensis georgi, has been shown to effectively inhibit cell apoptosis. Therefore, we assumed that baicalin would suppress co-listin sulfate-induced neuronal apoptosis. PC12 cells exposed to colistin sulfate (62.5–500 μg/mL) for 24 hours resulted in PC12 cell apoptosis. In addition, caspase-3 activity, lactate dehydrogenase level and free radical content increased in a dose-dependent manner. Subsequently, PC12 cells were pretreated with baicalin (25, 50 and 100 μg/mL), and exposed to 125 μg/mL colistin sulfate. Cell morphology markedly changed, and cell viability increased. Moreover, caspase-3 activity, tate dehydrogenase level and free radical content decreased. Results indicated that baicalin inhi-bited colistin sulfate-induced PC12 cell apoptosis by suppressing free radical injury, and reducing caspase-3 activity and lactate dehydrogenase activity.