Cargando…

Danhong injection: A modulator for Golgi structural stability after cerebral ischemia-reperfusion injury

The cerebral ischemia-reperfusion model was established using the suture occlusion method, and rats were intraperitoneally given 8 mL/kg Danhong injection once a day prior to model establishment. Rat brain tissues were harvested at 6, 24, 48, 72 hours after reperfusion. Immunohistochemical staining...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yan, Hu, Zhiping, Lu, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146046/
https://www.ncbi.nlm.nih.gov/pubmed/25206544
http://dx.doi.org/10.3969/j.issn.1673-5374.2013.25.005
Descripción
Sumario:The cerebral ischemia-reperfusion model was established using the suture occlusion method, and rats were intraperitoneally given 8 mL/kg Danhong injection once a day prior to model establishment. Rat brain tissues were harvested at 6, 24, 48, 72 hours after reperfusion. Immunohistochemical staining showed that transforming growth factor-β1 expression increased, while Golgi matrix protein GM130 expression decreased after cerebral ischemia-reperfusion. Danhong injection was shown to significantly up-regulate the expression of transforming growth factor-β1 and GM130, and expression levels peaked at 7 days after reperfusion. At 7 days after cerebral ischemia-reperfusion, Golgi morphology was damaged in untreated rats, while Golgi morphology breakage was not observed after intervention with Danhong injection. These experimental findings indicate that Danhong injection can up-regulate the expression of transforming growth factor-β1 and GM130, and maintain Golgi stability, thus playing a neuroprotective role in rats after cerebral ischemia-reperfusion.