Cargando…
Optimal Sixteenth Order Convergent Method Based on Quasi-Hermite Interpolation for Computing Roots
We have given a four-step, multipoint iterative method without memory for solving nonlinear equations. The method is constructed by using quasi-Hermite interpolation and has order of convergence sixteen. As this method requires four function evaluations and one derivative evaluation at each step, it...
Autores principales: | Zafar, Fiza, Hussain, Nawab, Fatimah, Zirwah, Kharal, Athar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146478/ https://www.ncbi.nlm.nih.gov/pubmed/25197701 http://dx.doi.org/10.1155/2014/410410 |
Ejemplares similares
-
Convergence and norm estimates of Hermite interpolation at zeros of Chevyshev polynomials
por: Al-Khaled, Kamel, et al.
Publicado: (2016) -
Generation of multivariate Hermite interpolating polynomials
por: Tavares, Santiago Alves
Publicado: (2005) -
Atomic Electronic
Structure Calculations with Hermite
Interpolating Polynomials
por: Lehtola, Susi
Publicado: (2023) -
A General Class of Derivative Free Optimal Root Finding Methods Based on Rational Interpolation
por: Zafar, Fiza, et al.
Publicado: (2015) -
Real-time quintic Hermite interpolation for robot trajectory execution
por: Lind, Morten
Publicado: (2020)