Cargando…

Relationships between Neonatal Weight, Limb Lengths, Skinfold Thicknesses, Body Breadths and Circumferences in an Australian Cohort

BACKGROUND: Low birth weight has been consistently associated with adult chronic disease risk. The thrifty phenotype hypothesis assumes that reduced fetal growth impacts some organs more than others. However, it remains unclear how birth weight relates to different body components, such as circumfer...

Descripción completa

Detalles Bibliográficos
Autores principales: Pomeroy, Emma, Stock, Jay T., Cole, Tim J., O'Callaghan, Michael, Wells, Jonathan C. K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146506/
https://www.ncbi.nlm.nih.gov/pubmed/25162658
http://dx.doi.org/10.1371/journal.pone.0105108
_version_ 1782332352635076608
author Pomeroy, Emma
Stock, Jay T.
Cole, Tim J.
O'Callaghan, Michael
Wells, Jonathan C. K.
author_facet Pomeroy, Emma
Stock, Jay T.
Cole, Tim J.
O'Callaghan, Michael
Wells, Jonathan C. K.
author_sort Pomeroy, Emma
collection PubMed
description BACKGROUND: Low birth weight has been consistently associated with adult chronic disease risk. The thrifty phenotype hypothesis assumes that reduced fetal growth impacts some organs more than others. However, it remains unclear how birth weight relates to different body components, such as circumferences, adiposity, body segment lengths and limb proportions. We hypothesized that these components vary in their relationship to birth weight. METHODS: We analysed the relationship between birth weight and detailed anthropometry in 1270 singleton live-born neonates (668 male) from the Mater-University of Queensland Study of Pregnancy (Brisbane, Australia). We tested adjusted anthropometry for correlations with birth weight. We then performed stepwise multiple regression on birth weight of: body lengths, breadths and circumferences; relative limb to neck-rump proportions; or skinfold thicknesses. All analyses were adjusted for sex and gestational age, and used logged data. RESULTS: Circumferences, especially chest, were most strongly related to birth weight, while segment lengths (neck-rump, thigh, upper arm, and especially lower arm and lower leg) were relatively weakly related to birth weight, and limb lengths relative to neck-rump length showed no relationship. Skinfolds accounted for 36% of birth weight variance, but adjusting for size (neck-rump, thigh and upper arm lengths, and head circumference), this decreased to 10%. There was no evidence that heavier babies had proportionally thicker skinfolds. CONCLUSIONS: Neonatal body measurements vary in their association with birth weight: head and chest circumferences showed the strongest associations while limb segment lengths did not relate strongly to birth weight. After adjusting for body size, subcutaneous fatness accounted for a smaller proportion of birth weight variance than previously reported. While heavier babies had absolutely thicker skinfolds, this was proportional to their size. Relative limb to trunk length was unrelated to birth weight, suggesting that limb proportions at birth do not index factors relevant to prenatal life.
format Online
Article
Text
id pubmed-4146506
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-41465062014-08-29 Relationships between Neonatal Weight, Limb Lengths, Skinfold Thicknesses, Body Breadths and Circumferences in an Australian Cohort Pomeroy, Emma Stock, Jay T. Cole, Tim J. O'Callaghan, Michael Wells, Jonathan C. K. PLoS One Research Article BACKGROUND: Low birth weight has been consistently associated with adult chronic disease risk. The thrifty phenotype hypothesis assumes that reduced fetal growth impacts some organs more than others. However, it remains unclear how birth weight relates to different body components, such as circumferences, adiposity, body segment lengths and limb proportions. We hypothesized that these components vary in their relationship to birth weight. METHODS: We analysed the relationship between birth weight and detailed anthropometry in 1270 singleton live-born neonates (668 male) from the Mater-University of Queensland Study of Pregnancy (Brisbane, Australia). We tested adjusted anthropometry for correlations with birth weight. We then performed stepwise multiple regression on birth weight of: body lengths, breadths and circumferences; relative limb to neck-rump proportions; or skinfold thicknesses. All analyses were adjusted for sex and gestational age, and used logged data. RESULTS: Circumferences, especially chest, were most strongly related to birth weight, while segment lengths (neck-rump, thigh, upper arm, and especially lower arm and lower leg) were relatively weakly related to birth weight, and limb lengths relative to neck-rump length showed no relationship. Skinfolds accounted for 36% of birth weight variance, but adjusting for size (neck-rump, thigh and upper arm lengths, and head circumference), this decreased to 10%. There was no evidence that heavier babies had proportionally thicker skinfolds. CONCLUSIONS: Neonatal body measurements vary in their association with birth weight: head and chest circumferences showed the strongest associations while limb segment lengths did not relate strongly to birth weight. After adjusting for body size, subcutaneous fatness accounted for a smaller proportion of birth weight variance than previously reported. While heavier babies had absolutely thicker skinfolds, this was proportional to their size. Relative limb to trunk length was unrelated to birth weight, suggesting that limb proportions at birth do not index factors relevant to prenatal life. Public Library of Science 2014-08-27 /pmc/articles/PMC4146506/ /pubmed/25162658 http://dx.doi.org/10.1371/journal.pone.0105108 Text en © 2014 Pomeroy et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Pomeroy, Emma
Stock, Jay T.
Cole, Tim J.
O'Callaghan, Michael
Wells, Jonathan C. K.
Relationships between Neonatal Weight, Limb Lengths, Skinfold Thicknesses, Body Breadths and Circumferences in an Australian Cohort
title Relationships between Neonatal Weight, Limb Lengths, Skinfold Thicknesses, Body Breadths and Circumferences in an Australian Cohort
title_full Relationships between Neonatal Weight, Limb Lengths, Skinfold Thicknesses, Body Breadths and Circumferences in an Australian Cohort
title_fullStr Relationships between Neonatal Weight, Limb Lengths, Skinfold Thicknesses, Body Breadths and Circumferences in an Australian Cohort
title_full_unstemmed Relationships between Neonatal Weight, Limb Lengths, Skinfold Thicknesses, Body Breadths and Circumferences in an Australian Cohort
title_short Relationships between Neonatal Weight, Limb Lengths, Skinfold Thicknesses, Body Breadths and Circumferences in an Australian Cohort
title_sort relationships between neonatal weight, limb lengths, skinfold thicknesses, body breadths and circumferences in an australian cohort
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146506/
https://www.ncbi.nlm.nih.gov/pubmed/25162658
http://dx.doi.org/10.1371/journal.pone.0105108
work_keys_str_mv AT pomeroyemma relationshipsbetweenneonatalweightlimblengthsskinfoldthicknessesbodybreadthsandcircumferencesinanaustraliancohort
AT stockjayt relationshipsbetweenneonatalweightlimblengthsskinfoldthicknessesbodybreadthsandcircumferencesinanaustraliancohort
AT coletimj relationshipsbetweenneonatalweightlimblengthsskinfoldthicknessesbodybreadthsandcircumferencesinanaustraliancohort
AT ocallaghanmichael relationshipsbetweenneonatalweightlimblengthsskinfoldthicknessesbodybreadthsandcircumferencesinanaustraliancohort
AT wellsjonathanck relationshipsbetweenneonatalweightlimblengthsskinfoldthicknessesbodybreadthsandcircumferencesinanaustraliancohort