Cargando…
Phenotyping for patient safety: algorithm development for electronic health record based automated adverse event and medical error detection in neonatal intensive care
BACKGROUND: Although electronic health records (EHRs) have the potential to provide a foundation for quality and safety algorithms, few studies have measured their impact on automated adverse event (AE) and medical error (ME) detection within the neonatal intensive care unit (NICU) environment. OBJE...
Autores principales: | Li, Qi, Melton, Kristin, Lingren, Todd, Kirkendall, Eric S, Hall, Eric, Zhai, Haijun, Ni, Yizhao, Kaiser, Megan, Stoutenborough, Laura, Solti, Imre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147599/ https://www.ncbi.nlm.nih.gov/pubmed/24401171 http://dx.doi.org/10.1136/amiajnl-2013-001914 |
Ejemplares similares
-
Automated methods for the summarization of electronic health records
por: Pivovarov, Rimma, et al.
Publicado: (2015) -
Leveraging Food and Drug Administration Adverse Event Reports for the Automated Monitoring of Electronic Health Records in a Pediatric Hospital
por: Tang, Huaxiu, et al.
Publicado: (2017) -
An electronic health record driven algorithm to identify incident antidepressant medication users
por: Bobo, William V, et al.
Publicado: (2014) -
Assessing the similarity of surface linguistic features related to epilepsy across pediatric hospitals
por: Connolly, Brian, et al.
Publicado: (2014) -
Designing and evaluating an automated system for real-time medication administration error detection in a neonatal intensive care unit
por: Ni, Yizhao, et al.
Publicado: (2018)