Cargando…

Direct pulp capping in an immature incisor using a new bioactive material

Preservation of the pulp in a traumatized immature fractured incisor tooth is of prime importance in order to achieve apexogenesis, a natural apical closure. The main factor influencing this is pulpal protection by a bioactive material proving optimum marginal seal in preventing any microleakage. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhat, Sham S., Hegde, Sundeep K., Adhikari, Fardin, Bhat, Vidya S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147821/
https://www.ncbi.nlm.nih.gov/pubmed/25191081
http://dx.doi.org/10.4103/0976-237X.137967
Descripción
Sumario:Preservation of the pulp in a traumatized immature fractured incisor tooth is of prime importance in order to achieve apexogenesis, a natural apical closure. The main factor influencing this is pulpal protection by a bioactive material proving optimum marginal seal in preventing any microleakage. This case report presents an 8-year-old female diagnosed with Ellis Class 3 fracture of immature tooth 11 involving the mesial pulp horn. Under rubber dam isolation, a partial pulpotomy was performed and the pulp was sealed using a new bioactive material BIODENTINE to stimulate apexogenesis, dentine replacement and pulp protection. The fractured segment was reattached for optimum esthetics, which was a concern for the patient. The patient was followed-up for 1, 3, 6 and 12 months, which revealed continued apical closure and maintenance of pulp vitality. The patient remained asymptomatic. This case report provides evidence for the potential use of Biodentine as an effective pulp capping material in the future.