Cargando…
Experimental design schemes for learning Boolean network models
Motivation: A holy grail of biological research is a working model of the cell. Current modeling frameworks, especially in the protein–protein interaction domain, are mostly topological in nature, calling for stronger and more expressive network models. One promising alternative is logic-based or Bo...
Autores principales: | Atias, Nir, Gershenzon, Michal, Labazin, Katia, Sharan, Roded |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147904/ https://www.ncbi.nlm.nih.gov/pubmed/25161232 http://dx.doi.org/10.1093/bioinformatics/btu451 |
Ejemplares similares
-
Alignment-free protein interaction network comparison
por: Ali, Waqar, et al.
Publicado: (2014) -
Causal network inference using biochemical kinetics
por: Oates, Chris J., et al.
Publicado: (2014) -
Integration of molecular network data reconstructs Gene Ontology
por: Gligorijević, Vladimir, et al.
Publicado: (2014) -
The impact of incomplete knowledge on the evaluation of protein function prediction: a structured-output learning perspective
por: Jiang, Yuxiang, et al.
Publicado: (2014) -
Drug susceptibility prediction against a panel of drugs using kernelized Bayesian multitask learning
por: Gönen, Mehmet, et al.
Publicado: (2014)