Cargando…
Causal network inference using biochemical kinetics
Motivation: Networks are widely used as structural summaries of biochemical systems. Statistical estimation of networks is usually based on linear or discrete models. However, the dynamics of biochemical systems are generally non-linear, suggesting that suitable non-linear formulations may offer gai...
Autores principales: | Oates, Chris J., Dondelinger, Frank, Bayani, Nora, Korkola, James, Gray, Joe W., Mukherjee, Sach |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147905/ https://www.ncbi.nlm.nih.gov/pubmed/25161235 http://dx.doi.org/10.1093/bioinformatics/btu452 |
Ejemplares similares
-
Effects of small particle numbers on long-term behaviour in discrete biochemical systems
por: Kreyssig, Peter, et al.
Publicado: (2014) -
Alignment-free protein interaction network comparison
por: Ali, Waqar, et al.
Publicado: (2014) -
Experimental design schemes for learning Boolean network models
por: Atias, Nir, et al.
Publicado: (2014) -
Integration of molecular network data reconstructs Gene Ontology
por: Gligorijević, Vladimir, et al.
Publicado: (2014) -
HubAlign: an accurate and efficient method for global alignment of protein–protein interaction networks
por: Hashemifar, Somaye, et al.
Publicado: (2014)