Cargando…
Stronger findings for metabolomics through Bayesian modeling of multiple peaks and compound correlations
Motivation: Data analysis for metabolomics suffers from uncertainty because of the noisy measurement technology and the small sample size of experiments. Noise and the small sample size lead to a high probability of false findings. Further, individual compounds have natural variation between samples...
Autores principales: | Suvitaival, Tommi, Rogers, Simon, Kaski, Samuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147908/ https://www.ncbi.nlm.nih.gov/pubmed/25161234 http://dx.doi.org/10.1093/bioinformatics/btu455 |
Ejemplares similares
-
Stronger findings from mass spectral data through multi-peak modeling
por: Suvitaival, Tommi, et al.
Publicado: (2014) -
Identification of structural features in chemicals associated with cancer drug response: a systematic data-driven analysis
por: Khan, Suleiman A., et al.
Publicado: (2014) -
Drug susceptibility prediction against a panel of drugs using kernelized Bayesian multitask learning
por: Gönen, Mehmet, et al.
Publicado: (2014) -
TEMPI: probabilistic modeling time-evolving differential PPI networks with multiPle information
por: Kim, Yongsoo, et al.
Publicado: (2014) -
Towards a piRNA prediction using multiple kernel fusion and support vector machine
por: Brayet, Jocelyn, et al.
Publicado: (2014)