Cargando…

Large-scale automated identification of mouse brain cells in confocal light sheet microscopy images

Motivation: Recently, confocal light sheet microscopy has enabled high-throughput acquisition of whole mouse brain 3D images at the micron scale resolution. This poses the unprecedented challenge of creating accurate digital maps of the whole set of cells in a brain. Results: We introduce a fast and...

Descripción completa

Detalles Bibliográficos
Autores principales: Frasconi, Paolo, Silvestri, Ludovico, Soda, Paolo, Cortini, Roberto, Pavone, Francesco S., Iannello, Giulio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147922/
https://www.ncbi.nlm.nih.gov/pubmed/25161251
http://dx.doi.org/10.1093/bioinformatics/btu469
_version_ 1782332538494124032
author Frasconi, Paolo
Silvestri, Ludovico
Soda, Paolo
Cortini, Roberto
Pavone, Francesco S.
Iannello, Giulio
author_facet Frasconi, Paolo
Silvestri, Ludovico
Soda, Paolo
Cortini, Roberto
Pavone, Francesco S.
Iannello, Giulio
author_sort Frasconi, Paolo
collection PubMed
description Motivation: Recently, confocal light sheet microscopy has enabled high-throughput acquisition of whole mouse brain 3D images at the micron scale resolution. This poses the unprecedented challenge of creating accurate digital maps of the whole set of cells in a brain. Results: We introduce a fast and scalable algorithm for fully automated cell identification. We obtained the whole digital map of Purkinje cells in mouse cerebellum consisting of a set of 3D cell center coordinates. The method is accurate and we estimated an F(1) measure of 0.96 using 56 representative volumes, totaling 1.09 GVoxel and containing 4138 manually annotated soma centers. Availability and implementation: Source code and its documentation are available at http://bcfind.dinfo.unifi.it/. The whole pipeline of methods is implemented in Python and makes use of Pylearn2 and modified parts of Scikit-learn. Brain images are available on request. Contact: paolo.frasconi@unifi.it Supplementary information: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-4147922
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-41479222014-09-02 Large-scale automated identification of mouse brain cells in confocal light sheet microscopy images Frasconi, Paolo Silvestri, Ludovico Soda, Paolo Cortini, Roberto Pavone, Francesco S. Iannello, Giulio Bioinformatics Eccb 2014 Proceedings Papers Committee Motivation: Recently, confocal light sheet microscopy has enabled high-throughput acquisition of whole mouse brain 3D images at the micron scale resolution. This poses the unprecedented challenge of creating accurate digital maps of the whole set of cells in a brain. Results: We introduce a fast and scalable algorithm for fully automated cell identification. We obtained the whole digital map of Purkinje cells in mouse cerebellum consisting of a set of 3D cell center coordinates. The method is accurate and we estimated an F(1) measure of 0.96 using 56 representative volumes, totaling 1.09 GVoxel and containing 4138 manually annotated soma centers. Availability and implementation: Source code and its documentation are available at http://bcfind.dinfo.unifi.it/. The whole pipeline of methods is implemented in Python and makes use of Pylearn2 and modified parts of Scikit-learn. Brain images are available on request. Contact: paolo.frasconi@unifi.it Supplementary information: Supplementary data are available at Bioinformatics online. Oxford University Press 2014-09-01 2014-08-22 /pmc/articles/PMC4147922/ /pubmed/25161251 http://dx.doi.org/10.1093/bioinformatics/btu469 Text en © The Author 2014. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Eccb 2014 Proceedings Papers Committee
Frasconi, Paolo
Silvestri, Ludovico
Soda, Paolo
Cortini, Roberto
Pavone, Francesco S.
Iannello, Giulio
Large-scale automated identification of mouse brain cells in confocal light sheet microscopy images
title Large-scale automated identification of mouse brain cells in confocal light sheet microscopy images
title_full Large-scale automated identification of mouse brain cells in confocal light sheet microscopy images
title_fullStr Large-scale automated identification of mouse brain cells in confocal light sheet microscopy images
title_full_unstemmed Large-scale automated identification of mouse brain cells in confocal light sheet microscopy images
title_short Large-scale automated identification of mouse brain cells in confocal light sheet microscopy images
title_sort large-scale automated identification of mouse brain cells in confocal light sheet microscopy images
topic Eccb 2014 Proceedings Papers Committee
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147922/
https://www.ncbi.nlm.nih.gov/pubmed/25161251
http://dx.doi.org/10.1093/bioinformatics/btu469
work_keys_str_mv AT frasconipaolo largescaleautomatedidentificationofmousebraincellsinconfocallightsheetmicroscopyimages
AT silvestriludovico largescaleautomatedidentificationofmousebraincellsinconfocallightsheetmicroscopyimages
AT sodapaolo largescaleautomatedidentificationofmousebraincellsinconfocallightsheetmicroscopyimages
AT cortiniroberto largescaleautomatedidentificationofmousebraincellsinconfocallightsheetmicroscopyimages
AT pavonefrancescos largescaleautomatedidentificationofmousebraincellsinconfocallightsheetmicroscopyimages
AT iannellogiulio largescaleautomatedidentificationofmousebraincellsinconfocallightsheetmicroscopyimages