Cargando…
Chelator-Free (64)Cu-Integrated Gold Nanomaterials for Positron Emission Tomography Imaging Guided Photothermal Cancer Therapy
[Image: see text] Using positron emission tomography (PET) imaging to monitor and quantitatively analyze the delivery and localization of Au nanomaterials (NMs), a widely used photothermal agent, is essential to optimize therapeutic protocols to achieve individualized medicine and avoid side effects...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148157/ https://www.ncbi.nlm.nih.gov/pubmed/25019252 http://dx.doi.org/10.1021/nn502950t |
_version_ | 1782332566304456704 |
---|---|
author | Sun, Xiaolian Huang, Xinglu Yan, Xuefeng Wang, Yu Guo, Jinxia Jacobson, Orit Liu, Dingbin Szajek, Lawrence P. Zhu, Wenlei Niu, Gang Kiesewetter, Dale O. Sun, Shouheng Chen, Xiaoyuan |
author_facet | Sun, Xiaolian Huang, Xinglu Yan, Xuefeng Wang, Yu Guo, Jinxia Jacobson, Orit Liu, Dingbin Szajek, Lawrence P. Zhu, Wenlei Niu, Gang Kiesewetter, Dale O. Sun, Shouheng Chen, Xiaoyuan |
author_sort | Sun, Xiaolian |
collection | PubMed |
description | [Image: see text] Using positron emission tomography (PET) imaging to monitor and quantitatively analyze the delivery and localization of Au nanomaterials (NMs), a widely used photothermal agent, is essential to optimize therapeutic protocols to achieve individualized medicine and avoid side effects. Coupling radiometals to Au NMs via a chelator faces the challenges of possible detachment of the radiometals as well as surface property changes of the NMs. In this study, we reported a simple and general chelator-free (64)Cu radiolabeling method by chemically reducing (64)Cu on the surface of polyethylene glycol (PEG)-stabilized Au NMs regardless of their shape and size. Our (64)Cu-integrated NMs are proved to be radiochemically stable and can provide an accurate and sensitive localization of NMs through noninvasive PET imaging. We further integrated (64)Cu onto arginine-glycine-aspartic acid (RGD) peptide modified Au nanorods (NRs) for tumor theranostic application. These NRs showed high tumor targeting ability in a U87MG glioblastoma xenograft model and were successfully used for PET image-guided photothermal therapy. |
format | Online Article Text |
id | pubmed-4148157 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-41481572015-07-14 Chelator-Free (64)Cu-Integrated Gold Nanomaterials for Positron Emission Tomography Imaging Guided Photothermal Cancer Therapy Sun, Xiaolian Huang, Xinglu Yan, Xuefeng Wang, Yu Guo, Jinxia Jacobson, Orit Liu, Dingbin Szajek, Lawrence P. Zhu, Wenlei Niu, Gang Kiesewetter, Dale O. Sun, Shouheng Chen, Xiaoyuan ACS Nano [Image: see text] Using positron emission tomography (PET) imaging to monitor and quantitatively analyze the delivery and localization of Au nanomaterials (NMs), a widely used photothermal agent, is essential to optimize therapeutic protocols to achieve individualized medicine and avoid side effects. Coupling radiometals to Au NMs via a chelator faces the challenges of possible detachment of the radiometals as well as surface property changes of the NMs. In this study, we reported a simple and general chelator-free (64)Cu radiolabeling method by chemically reducing (64)Cu on the surface of polyethylene glycol (PEG)-stabilized Au NMs regardless of their shape and size. Our (64)Cu-integrated NMs are proved to be radiochemically stable and can provide an accurate and sensitive localization of NMs through noninvasive PET imaging. We further integrated (64)Cu onto arginine-glycine-aspartic acid (RGD) peptide modified Au nanorods (NRs) for tumor theranostic application. These NRs showed high tumor targeting ability in a U87MG glioblastoma xenograft model and were successfully used for PET image-guided photothermal therapy. American Chemical Society 2014-07-14 2014-08-26 /pmc/articles/PMC4148157/ /pubmed/25019252 http://dx.doi.org/10.1021/nn502950t Text en Copyright © 2014 American Chemical Society Terms of Use (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) |
spellingShingle | Sun, Xiaolian Huang, Xinglu Yan, Xuefeng Wang, Yu Guo, Jinxia Jacobson, Orit Liu, Dingbin Szajek, Lawrence P. Zhu, Wenlei Niu, Gang Kiesewetter, Dale O. Sun, Shouheng Chen, Xiaoyuan Chelator-Free (64)Cu-Integrated Gold Nanomaterials for Positron Emission Tomography Imaging Guided Photothermal Cancer Therapy |
title | Chelator-Free (64)Cu-Integrated Gold Nanomaterials for Positron Emission Tomography Imaging Guided Photothermal Cancer Therapy |
title_full | Chelator-Free (64)Cu-Integrated Gold Nanomaterials for Positron Emission Tomography Imaging Guided Photothermal Cancer Therapy |
title_fullStr | Chelator-Free (64)Cu-Integrated Gold Nanomaterials for Positron Emission Tomography Imaging Guided Photothermal Cancer Therapy |
title_full_unstemmed | Chelator-Free (64)Cu-Integrated Gold Nanomaterials for Positron Emission Tomography Imaging Guided Photothermal Cancer Therapy |
title_short | Chelator-Free (64)Cu-Integrated Gold Nanomaterials for Positron Emission Tomography Imaging Guided Photothermal Cancer Therapy |
title_sort | chelator-free (64)cu-integrated gold nanomaterials for positron emission tomography imaging guided photothermal cancer therapy |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148157/ https://www.ncbi.nlm.nih.gov/pubmed/25019252 http://dx.doi.org/10.1021/nn502950t |
work_keys_str_mv | AT sunxiaolian chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy AT huangxinglu chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy AT yanxuefeng chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy AT wangyu chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy AT guojinxia chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy AT jacobsonorit chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy AT liudingbin chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy AT szajeklawrencep chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy AT zhuwenlei chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy AT niugang chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy AT kiesewetterdaleo chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy AT sunshouheng chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy AT chenxiaoyuan chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy |