Cargando…

Chelator-Free (64)Cu-Integrated Gold Nanomaterials for Positron Emission Tomography Imaging Guided Photothermal Cancer Therapy

[Image: see text] Using positron emission tomography (PET) imaging to monitor and quantitatively analyze the delivery and localization of Au nanomaterials (NMs), a widely used photothermal agent, is essential to optimize therapeutic protocols to achieve individualized medicine and avoid side effects...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Xiaolian, Huang, Xinglu, Yan, Xuefeng, Wang, Yu, Guo, Jinxia, Jacobson, Orit, Liu, Dingbin, Szajek, Lawrence P., Zhu, Wenlei, Niu, Gang, Kiesewetter, Dale O., Sun, Shouheng, Chen, Xiaoyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148157/
https://www.ncbi.nlm.nih.gov/pubmed/25019252
http://dx.doi.org/10.1021/nn502950t
_version_ 1782332566304456704
author Sun, Xiaolian
Huang, Xinglu
Yan, Xuefeng
Wang, Yu
Guo, Jinxia
Jacobson, Orit
Liu, Dingbin
Szajek, Lawrence P.
Zhu, Wenlei
Niu, Gang
Kiesewetter, Dale O.
Sun, Shouheng
Chen, Xiaoyuan
author_facet Sun, Xiaolian
Huang, Xinglu
Yan, Xuefeng
Wang, Yu
Guo, Jinxia
Jacobson, Orit
Liu, Dingbin
Szajek, Lawrence P.
Zhu, Wenlei
Niu, Gang
Kiesewetter, Dale O.
Sun, Shouheng
Chen, Xiaoyuan
author_sort Sun, Xiaolian
collection PubMed
description [Image: see text] Using positron emission tomography (PET) imaging to monitor and quantitatively analyze the delivery and localization of Au nanomaterials (NMs), a widely used photothermal agent, is essential to optimize therapeutic protocols to achieve individualized medicine and avoid side effects. Coupling radiometals to Au NMs via a chelator faces the challenges of possible detachment of the radiometals as well as surface property changes of the NMs. In this study, we reported a simple and general chelator-free (64)Cu radiolabeling method by chemically reducing (64)Cu on the surface of polyethylene glycol (PEG)-stabilized Au NMs regardless of their shape and size. Our (64)Cu-integrated NMs are proved to be radiochemically stable and can provide an accurate and sensitive localization of NMs through noninvasive PET imaging. We further integrated (64)Cu onto arginine-glycine-aspartic acid (RGD) peptide modified Au nanorods (NRs) for tumor theranostic application. These NRs showed high tumor targeting ability in a U87MG glioblastoma xenograft model and were successfully used for PET image-guided photothermal therapy.
format Online
Article
Text
id pubmed-4148157
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-41481572015-07-14 Chelator-Free (64)Cu-Integrated Gold Nanomaterials for Positron Emission Tomography Imaging Guided Photothermal Cancer Therapy Sun, Xiaolian Huang, Xinglu Yan, Xuefeng Wang, Yu Guo, Jinxia Jacobson, Orit Liu, Dingbin Szajek, Lawrence P. Zhu, Wenlei Niu, Gang Kiesewetter, Dale O. Sun, Shouheng Chen, Xiaoyuan ACS Nano [Image: see text] Using positron emission tomography (PET) imaging to monitor and quantitatively analyze the delivery and localization of Au nanomaterials (NMs), a widely used photothermal agent, is essential to optimize therapeutic protocols to achieve individualized medicine and avoid side effects. Coupling radiometals to Au NMs via a chelator faces the challenges of possible detachment of the radiometals as well as surface property changes of the NMs. In this study, we reported a simple and general chelator-free (64)Cu radiolabeling method by chemically reducing (64)Cu on the surface of polyethylene glycol (PEG)-stabilized Au NMs regardless of their shape and size. Our (64)Cu-integrated NMs are proved to be radiochemically stable and can provide an accurate and sensitive localization of NMs through noninvasive PET imaging. We further integrated (64)Cu onto arginine-glycine-aspartic acid (RGD) peptide modified Au nanorods (NRs) for tumor theranostic application. These NRs showed high tumor targeting ability in a U87MG glioblastoma xenograft model and were successfully used for PET image-guided photothermal therapy. American Chemical Society 2014-07-14 2014-08-26 /pmc/articles/PMC4148157/ /pubmed/25019252 http://dx.doi.org/10.1021/nn502950t Text en Copyright © 2014 American Chemical Society Terms of Use (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html)
spellingShingle Sun, Xiaolian
Huang, Xinglu
Yan, Xuefeng
Wang, Yu
Guo, Jinxia
Jacobson, Orit
Liu, Dingbin
Szajek, Lawrence P.
Zhu, Wenlei
Niu, Gang
Kiesewetter, Dale O.
Sun, Shouheng
Chen, Xiaoyuan
Chelator-Free (64)Cu-Integrated Gold Nanomaterials for Positron Emission Tomography Imaging Guided Photothermal Cancer Therapy
title Chelator-Free (64)Cu-Integrated Gold Nanomaterials for Positron Emission Tomography Imaging Guided Photothermal Cancer Therapy
title_full Chelator-Free (64)Cu-Integrated Gold Nanomaterials for Positron Emission Tomography Imaging Guided Photothermal Cancer Therapy
title_fullStr Chelator-Free (64)Cu-Integrated Gold Nanomaterials for Positron Emission Tomography Imaging Guided Photothermal Cancer Therapy
title_full_unstemmed Chelator-Free (64)Cu-Integrated Gold Nanomaterials for Positron Emission Tomography Imaging Guided Photothermal Cancer Therapy
title_short Chelator-Free (64)Cu-Integrated Gold Nanomaterials for Positron Emission Tomography Imaging Guided Photothermal Cancer Therapy
title_sort chelator-free (64)cu-integrated gold nanomaterials for positron emission tomography imaging guided photothermal cancer therapy
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148157/
https://www.ncbi.nlm.nih.gov/pubmed/25019252
http://dx.doi.org/10.1021/nn502950t
work_keys_str_mv AT sunxiaolian chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy
AT huangxinglu chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy
AT yanxuefeng chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy
AT wangyu chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy
AT guojinxia chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy
AT jacobsonorit chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy
AT liudingbin chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy
AT szajeklawrencep chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy
AT zhuwenlei chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy
AT niugang chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy
AT kiesewetterdaleo chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy
AT sunshouheng chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy
AT chenxiaoyuan chelatorfree64cuintegratedgoldnanomaterialsforpositronemissiontomographyimagingguidedphotothermalcancertherapy