Cargando…

Network Structure within the Cerebellar Input Layer Enables Lossless Sparse Encoding

The synaptic connectivity within neuronal networks is thought to determine the information processing they perform, yet network structure-function relationships remain poorly understood. By combining quantitative anatomy of the cerebellar input layer and information theoretic analysis of network mod...

Descripción completa

Detalles Bibliográficos
Autores principales: Billings, Guy, Piasini, Eugenio, Lőrincz, Andrea, Nusser, Zoltan, Silver, R. Angus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148198/
https://www.ncbi.nlm.nih.gov/pubmed/25123311
http://dx.doi.org/10.1016/j.neuron.2014.07.020
_version_ 1782332574976180224
author Billings, Guy
Piasini, Eugenio
Lőrincz, Andrea
Nusser, Zoltan
Silver, R. Angus
author_facet Billings, Guy
Piasini, Eugenio
Lőrincz, Andrea
Nusser, Zoltan
Silver, R. Angus
author_sort Billings, Guy
collection PubMed
description The synaptic connectivity within neuronal networks is thought to determine the information processing they perform, yet network structure-function relationships remain poorly understood. By combining quantitative anatomy of the cerebellar input layer and information theoretic analysis of network models, we investigated how synaptic connectivity affects information transmission and processing. Simplified binary models revealed that the synaptic connectivity within feedforward networks determines the trade-off between information transmission and sparse encoding. Networks with few synaptic connections per neuron and network-activity-dependent threshold were optimal for lossless sparse encoding over the widest range of input activities. Biologically detailed spiking network models with experimentally constrained synaptic conductances and inhibition confirmed our analytical predictions. Our results establish that the synaptic connectivity within the cerebellar input layer enables efficient lossless sparse encoding. Moreover, they provide a functional explanation for why granule cells have approximately four dendrites, a feature that has been evolutionarily conserved since the appearance of fish.
format Online
Article
Text
id pubmed-4148198
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-41481982014-09-01 Network Structure within the Cerebellar Input Layer Enables Lossless Sparse Encoding Billings, Guy Piasini, Eugenio Lőrincz, Andrea Nusser, Zoltan Silver, R. Angus Neuron Article The synaptic connectivity within neuronal networks is thought to determine the information processing they perform, yet network structure-function relationships remain poorly understood. By combining quantitative anatomy of the cerebellar input layer and information theoretic analysis of network models, we investigated how synaptic connectivity affects information transmission and processing. Simplified binary models revealed that the synaptic connectivity within feedforward networks determines the trade-off between information transmission and sparse encoding. Networks with few synaptic connections per neuron and network-activity-dependent threshold were optimal for lossless sparse encoding over the widest range of input activities. Biologically detailed spiking network models with experimentally constrained synaptic conductances and inhibition confirmed our analytical predictions. Our results establish that the synaptic connectivity within the cerebellar input layer enables efficient lossless sparse encoding. Moreover, they provide a functional explanation for why granule cells have approximately four dendrites, a feature that has been evolutionarily conserved since the appearance of fish. Cell Press 2014-08-20 /pmc/articles/PMC4148198/ /pubmed/25123311 http://dx.doi.org/10.1016/j.neuron.2014.07.020 Text en © 2014 The Authors. Published by Elsevier Inc. https://creativecommons.org/licenses/by/3.0/This work is licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/) .
spellingShingle Article
Billings, Guy
Piasini, Eugenio
Lőrincz, Andrea
Nusser, Zoltan
Silver, R. Angus
Network Structure within the Cerebellar Input Layer Enables Lossless Sparse Encoding
title Network Structure within the Cerebellar Input Layer Enables Lossless Sparse Encoding
title_full Network Structure within the Cerebellar Input Layer Enables Lossless Sparse Encoding
title_fullStr Network Structure within the Cerebellar Input Layer Enables Lossless Sparse Encoding
title_full_unstemmed Network Structure within the Cerebellar Input Layer Enables Lossless Sparse Encoding
title_short Network Structure within the Cerebellar Input Layer Enables Lossless Sparse Encoding
title_sort network structure within the cerebellar input layer enables lossless sparse encoding
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148198/
https://www.ncbi.nlm.nih.gov/pubmed/25123311
http://dx.doi.org/10.1016/j.neuron.2014.07.020
work_keys_str_mv AT billingsguy networkstructurewithinthecerebellarinputlayerenableslosslesssparseencoding
AT piasinieugenio networkstructurewithinthecerebellarinputlayerenableslosslesssparseencoding
AT lorinczandrea networkstructurewithinthecerebellarinputlayerenableslosslesssparseencoding
AT nusserzoltan networkstructurewithinthecerebellarinputlayerenableslosslesssparseencoding
AT silverrangus networkstructurewithinthecerebellarinputlayerenableslosslesssparseencoding