Cargando…
Network Structure within the Cerebellar Input Layer Enables Lossless Sparse Encoding
The synaptic connectivity within neuronal networks is thought to determine the information processing they perform, yet network structure-function relationships remain poorly understood. By combining quantitative anatomy of the cerebellar input layer and information theoretic analysis of network mod...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148198/ https://www.ncbi.nlm.nih.gov/pubmed/25123311 http://dx.doi.org/10.1016/j.neuron.2014.07.020 |
_version_ | 1782332574976180224 |
---|---|
author | Billings, Guy Piasini, Eugenio Lőrincz, Andrea Nusser, Zoltan Silver, R. Angus |
author_facet | Billings, Guy Piasini, Eugenio Lőrincz, Andrea Nusser, Zoltan Silver, R. Angus |
author_sort | Billings, Guy |
collection | PubMed |
description | The synaptic connectivity within neuronal networks is thought to determine the information processing they perform, yet network structure-function relationships remain poorly understood. By combining quantitative anatomy of the cerebellar input layer and information theoretic analysis of network models, we investigated how synaptic connectivity affects information transmission and processing. Simplified binary models revealed that the synaptic connectivity within feedforward networks determines the trade-off between information transmission and sparse encoding. Networks with few synaptic connections per neuron and network-activity-dependent threshold were optimal for lossless sparse encoding over the widest range of input activities. Biologically detailed spiking network models with experimentally constrained synaptic conductances and inhibition confirmed our analytical predictions. Our results establish that the synaptic connectivity within the cerebellar input layer enables efficient lossless sparse encoding. Moreover, they provide a functional explanation for why granule cells have approximately four dendrites, a feature that has been evolutionarily conserved since the appearance of fish. |
format | Online Article Text |
id | pubmed-4148198 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-41481982014-09-01 Network Structure within the Cerebellar Input Layer Enables Lossless Sparse Encoding Billings, Guy Piasini, Eugenio Lőrincz, Andrea Nusser, Zoltan Silver, R. Angus Neuron Article The synaptic connectivity within neuronal networks is thought to determine the information processing they perform, yet network structure-function relationships remain poorly understood. By combining quantitative anatomy of the cerebellar input layer and information theoretic analysis of network models, we investigated how synaptic connectivity affects information transmission and processing. Simplified binary models revealed that the synaptic connectivity within feedforward networks determines the trade-off between information transmission and sparse encoding. Networks with few synaptic connections per neuron and network-activity-dependent threshold were optimal for lossless sparse encoding over the widest range of input activities. Biologically detailed spiking network models with experimentally constrained synaptic conductances and inhibition confirmed our analytical predictions. Our results establish that the synaptic connectivity within the cerebellar input layer enables efficient lossless sparse encoding. Moreover, they provide a functional explanation for why granule cells have approximately four dendrites, a feature that has been evolutionarily conserved since the appearance of fish. Cell Press 2014-08-20 /pmc/articles/PMC4148198/ /pubmed/25123311 http://dx.doi.org/10.1016/j.neuron.2014.07.020 Text en © 2014 The Authors. Published by Elsevier Inc. https://creativecommons.org/licenses/by/3.0/This work is licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/) . |
spellingShingle | Article Billings, Guy Piasini, Eugenio Lőrincz, Andrea Nusser, Zoltan Silver, R. Angus Network Structure within the Cerebellar Input Layer Enables Lossless Sparse Encoding |
title | Network Structure within the Cerebellar Input Layer Enables Lossless Sparse Encoding |
title_full | Network Structure within the Cerebellar Input Layer Enables Lossless Sparse Encoding |
title_fullStr | Network Structure within the Cerebellar Input Layer Enables Lossless Sparse Encoding |
title_full_unstemmed | Network Structure within the Cerebellar Input Layer Enables Lossless Sparse Encoding |
title_short | Network Structure within the Cerebellar Input Layer Enables Lossless Sparse Encoding |
title_sort | network structure within the cerebellar input layer enables lossless sparse encoding |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148198/ https://www.ncbi.nlm.nih.gov/pubmed/25123311 http://dx.doi.org/10.1016/j.neuron.2014.07.020 |
work_keys_str_mv | AT billingsguy networkstructurewithinthecerebellarinputlayerenableslosslesssparseencoding AT piasinieugenio networkstructurewithinthecerebellarinputlayerenableslosslesssparseencoding AT lorinczandrea networkstructurewithinthecerebellarinputlayerenableslosslesssparseencoding AT nusserzoltan networkstructurewithinthecerebellarinputlayerenableslosslesssparseencoding AT silverrangus networkstructurewithinthecerebellarinputlayerenableslosslesssparseencoding |