Cargando…

Balanced Trade-Offs between Alternative Strategies Shape the Response of C. elegans Reproduction to Chronic Heat Stress

To ensure long-term reproductive success organisms have to cope with harsh environmental extremes. A reproductive strategy that simply maximizes offspring production is likely to be disadvantageous because it could lead to a catastrophic loss of fecundity under unfavorable conditions. To understand...

Descripción completa

Detalles Bibliográficos
Autores principales: Aprison, Erin Z., Ruvinsky, Ilya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148340/
https://www.ncbi.nlm.nih.gov/pubmed/25165831
http://dx.doi.org/10.1371/journal.pone.0105513
Descripción
Sumario:To ensure long-term reproductive success organisms have to cope with harsh environmental extremes. A reproductive strategy that simply maximizes offspring production is likely to be disadvantageous because it could lead to a catastrophic loss of fecundity under unfavorable conditions. To understand how an appropriate balance is achieved, we investigated reproductive performance of C. elegans under conditions of chronic heat stress. We found that following even prolonged exposure to temperatures at which none of the offspring survive, worms could recover and resume reproduction. The likelihood of producing viable offspring falls precipitously after exposure to temperatures greater than 28°C primarily due to sperm damage. Surprisingly, we found that worms that experienced higher temperatures can recover considerably better, provided they did not initiate ovulation. Therefore mechanisms controlling this process must play a crucial role in determining the probability of recovery. We show, however, that suppressing ovulation is only beneficial under relatively long stresses, whereas it is a disadvantageous strategy under shorter stresses of the same intensity. This is because the benefit of shutting down egg laying, and thus protecting the reproductive system, is negated by the cost associated with implementing this strategy – it takes considerable time to recover and produce offspring. We interpret these balanced trade-offs as a dynamic response of the C. elegans reproductive system to stress and an adaptation to life in variable and unpredictable conditions.