Cargando…
Lack of cardiac and high-fat diet induced metabolic phenotypes in two independent strains of Vegf-b knockout mice
Vascular endothelial growth factor-B (VEGF-B) has been implicated to play a significant role in coronary vessel growth and endothelial uptake and transport of fatty acids in heart and skeletal muscle. Additionally, recent studies have shown that Vegf-b deficiency protects from high-fat diet (HFD)-in...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4148648/ https://www.ncbi.nlm.nih.gov/pubmed/25168313 http://dx.doi.org/10.1038/srep06238 |
Sumario: | Vascular endothelial growth factor-B (VEGF-B) has been implicated to play a significant role in coronary vessel growth and endothelial uptake and transport of fatty acids in heart and skeletal muscle. Additionally, recent studies have shown that Vegf-b deficiency protects from high-fat diet (HFD)-induced diabetes and insulin resistance. We compared the cardiac function and the effects of HFD on body composition and glucose metabolism in two available Vegf-b knockout (Vegf-b(-/-) strains) mouse strains side by side with their respective littermate controls. We found no differences in HFD-induced weight gain, glucose tolerance or insulin resistance between the Vegf-b(-/-) strains and their littermate control mice. Furthermore, there was no difference in basal cardiac function and cardiac expression of genes involved in glucose or fatty acid metabolism between the Vegf-b(-/-) strains and their littermate control mice. We conclude that VEGF-B is dispensable for normal cardiac function under unstressed conditions and for HFD-induced metabolic changes. |
---|