Cargando…
Structure–Property Relationship Study of Substitution Effects on Isoindigo-Based Model Compounds as Electron Donors in Organic Solar Cells
[Image: see text] We designed and synthesized a series of isoindigo-based derivatives to investigate how chemical structure modification at both the 6,6′- and 5,5′-positions of the core with electron-rich and electron-poor moieties affect photophysical and redox properties as well as their solid-sta...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149328/ https://www.ncbi.nlm.nih.gov/pubmed/25089728 http://dx.doi.org/10.1021/am503812f |
_version_ | 1782332732195471360 |
---|---|
author | Ren, Yi Hiszpanski, Anna M. Whittaker-Brooks, Luisa Loo, Yueh-Lin |
author_facet | Ren, Yi Hiszpanski, Anna M. Whittaker-Brooks, Luisa Loo, Yueh-Lin |
author_sort | Ren, Yi |
collection | PubMed |
description | [Image: see text] We designed and synthesized a series of isoindigo-based derivatives to investigate how chemical structure modification at both the 6,6′- and 5,5′-positions of the core with electron-rich and electron-poor moieties affect photophysical and redox properties as well as their solid-state organization. Our studies reveal that 6,6′-substitution on the isoindigo core results in a stronger intramolecular charge transfer band due to strong electronic coupling between the 6,6′-substituent and the core, whereas 5,5′-substitution induces a weaker CT band that is more sensitive to the electronic nature of the substituents. In the solid state, 6,6′-derivatives generally form J-aggregates, whereas 5,5′-derivatives form H-aggregates. With only two branched ethylhexyl side chains, the 6,6′-derivatives form organized lamellar structures in the solid state. The incorporation of electron-rich benzothiophene, BT, substituents further enhances ordering, likely because of strong intermolecular donor–acceptor interactions between the BT substituent and the electron-poor isoindigo core on neighboring compounds. Collectively, the enhanced photophysical properties and solid-state organization of the 6,6′-benzothiophene substituted isoindigo derivative compared to the other isoindigo derivatives examined in this study resulted in solar cells with higher power conversion efficiencies when blended with a fullerene derivative. |
format | Online Article Text |
id | pubmed-4149328 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-41493282015-08-04 Structure–Property Relationship Study of Substitution Effects on Isoindigo-Based Model Compounds as Electron Donors in Organic Solar Cells Ren, Yi Hiszpanski, Anna M. Whittaker-Brooks, Luisa Loo, Yueh-Lin ACS Appl Mater Interfaces [Image: see text] We designed and synthesized a series of isoindigo-based derivatives to investigate how chemical structure modification at both the 6,6′- and 5,5′-positions of the core with electron-rich and electron-poor moieties affect photophysical and redox properties as well as their solid-state organization. Our studies reveal that 6,6′-substitution on the isoindigo core results in a stronger intramolecular charge transfer band due to strong electronic coupling between the 6,6′-substituent and the core, whereas 5,5′-substitution induces a weaker CT band that is more sensitive to the electronic nature of the substituents. In the solid state, 6,6′-derivatives generally form J-aggregates, whereas 5,5′-derivatives form H-aggregates. With only two branched ethylhexyl side chains, the 6,6′-derivatives form organized lamellar structures in the solid state. The incorporation of electron-rich benzothiophene, BT, substituents further enhances ordering, likely because of strong intermolecular donor–acceptor interactions between the BT substituent and the electron-poor isoindigo core on neighboring compounds. Collectively, the enhanced photophysical properties and solid-state organization of the 6,6′-benzothiophene substituted isoindigo derivative compared to the other isoindigo derivatives examined in this study resulted in solar cells with higher power conversion efficiencies when blended with a fullerene derivative. American Chemical Society 2014-08-04 2014-08-27 /pmc/articles/PMC4149328/ /pubmed/25089728 http://dx.doi.org/10.1021/am503812f Text en Copyright © 2014 American Chemical Society Terms of Use (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) |
spellingShingle | Ren, Yi Hiszpanski, Anna M. Whittaker-Brooks, Luisa Loo, Yueh-Lin Structure–Property Relationship Study of Substitution Effects on Isoindigo-Based Model Compounds as Electron Donors in Organic Solar Cells |
title | Structure–Property
Relationship Study of Substitution Effects on Isoindigo-Based Model
Compounds as Electron Donors in Organic Solar Cells |
title_full | Structure–Property
Relationship Study of Substitution Effects on Isoindigo-Based Model
Compounds as Electron Donors in Organic Solar Cells |
title_fullStr | Structure–Property
Relationship Study of Substitution Effects on Isoindigo-Based Model
Compounds as Electron Donors in Organic Solar Cells |
title_full_unstemmed | Structure–Property
Relationship Study of Substitution Effects on Isoindigo-Based Model
Compounds as Electron Donors in Organic Solar Cells |
title_short | Structure–Property
Relationship Study of Substitution Effects on Isoindigo-Based Model
Compounds as Electron Donors in Organic Solar Cells |
title_sort | structure–property
relationship study of substitution effects on isoindigo-based model
compounds as electron donors in organic solar cells |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149328/ https://www.ncbi.nlm.nih.gov/pubmed/25089728 http://dx.doi.org/10.1021/am503812f |
work_keys_str_mv | AT renyi structurepropertyrelationshipstudyofsubstitutioneffectsonisoindigobasedmodelcompoundsaselectrondonorsinorganicsolarcells AT hiszpanskiannam structurepropertyrelationshipstudyofsubstitutioneffectsonisoindigobasedmodelcompoundsaselectrondonorsinorganicsolarcells AT whittakerbrooksluisa structurepropertyrelationshipstudyofsubstitutioneffectsonisoindigobasedmodelcompoundsaselectrondonorsinorganicsolarcells AT looyuehlin structurepropertyrelationshipstudyofsubstitutioneffectsonisoindigobasedmodelcompoundsaselectrondonorsinorganicsolarcells |