Cargando…
Synergistic Transcriptional and Post-Transcriptional Regulation of ESC Characteristics by Core Pluripotency Transcription Factors in Protein-Protein Interaction Networks
The molecular mechanism that maintains the pluripotency of embryonic stem cells (ESCs) is not well understood but may be reflected in complex biological networks. However, there have been few studies on the effects of transcriptional and post-transcriptional regulation during the development of ESCs...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149371/ https://www.ncbi.nlm.nih.gov/pubmed/25171496 http://dx.doi.org/10.1371/journal.pone.0105180 |
_version_ | 1782332741995462656 |
---|---|
author | Li, Leijie Zhang, Liangcai Liu, Guiyou Feng, Rennan Jiang, Yongshuai Yang, Lei Zhang, Shihua Liao, Mingzhi Hua, Jinlian |
author_facet | Li, Leijie Zhang, Liangcai Liu, Guiyou Feng, Rennan Jiang, Yongshuai Yang, Lei Zhang, Shihua Liao, Mingzhi Hua, Jinlian |
author_sort | Li, Leijie |
collection | PubMed |
description | The molecular mechanism that maintains the pluripotency of embryonic stem cells (ESCs) is not well understood but may be reflected in complex biological networks. However, there have been few studies on the effects of transcriptional and post-transcriptional regulation during the development of ESCs from the perspective of computational systems biology. In this study, we analyzed the topological properties of the “core” pluripotency transcription factors (TFs) OCT4, SOX2 and NANOG in protein-protein interaction networks (PPINs). Further, we identified synergistic interactions between these TFs and microRNAs (miRNAs) in PPINs during ESC development. Results show that there were significant differences in centrality characters between TF-targets and non-TF-targets in PPINs. We also found that there was consistent regulation of multiple “core” pluripotency TFs. Based on the analysis of shortest path length, we found that the module properties were not only within the targets regulated by common or multiple “core” pluripotency TFs but also between the groups of targets regulated by different TFs. Finally, we identified synergistic regulation of these TFs and miRNAs. In summary, the synergistic effects of “core” pluripotency TFs and miRNAs were analyzed using computational methods in both human and mouse PPINs. |
format | Online Article Text |
id | pubmed-4149371 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41493712014-09-03 Synergistic Transcriptional and Post-Transcriptional Regulation of ESC Characteristics by Core Pluripotency Transcription Factors in Protein-Protein Interaction Networks Li, Leijie Zhang, Liangcai Liu, Guiyou Feng, Rennan Jiang, Yongshuai Yang, Lei Zhang, Shihua Liao, Mingzhi Hua, Jinlian PLoS One Research Article The molecular mechanism that maintains the pluripotency of embryonic stem cells (ESCs) is not well understood but may be reflected in complex biological networks. However, there have been few studies on the effects of transcriptional and post-transcriptional regulation during the development of ESCs from the perspective of computational systems biology. In this study, we analyzed the topological properties of the “core” pluripotency transcription factors (TFs) OCT4, SOX2 and NANOG in protein-protein interaction networks (PPINs). Further, we identified synergistic interactions between these TFs and microRNAs (miRNAs) in PPINs during ESC development. Results show that there were significant differences in centrality characters between TF-targets and non-TF-targets in PPINs. We also found that there was consistent regulation of multiple “core” pluripotency TFs. Based on the analysis of shortest path length, we found that the module properties were not only within the targets regulated by common or multiple “core” pluripotency TFs but also between the groups of targets regulated by different TFs. Finally, we identified synergistic regulation of these TFs and miRNAs. In summary, the synergistic effects of “core” pluripotency TFs and miRNAs were analyzed using computational methods in both human and mouse PPINs. Public Library of Science 2014-08-29 /pmc/articles/PMC4149371/ /pubmed/25171496 http://dx.doi.org/10.1371/journal.pone.0105180 Text en © 2014 Li et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Li, Leijie Zhang, Liangcai Liu, Guiyou Feng, Rennan Jiang, Yongshuai Yang, Lei Zhang, Shihua Liao, Mingzhi Hua, Jinlian Synergistic Transcriptional and Post-Transcriptional Regulation of ESC Characteristics by Core Pluripotency Transcription Factors in Protein-Protein Interaction Networks |
title | Synergistic Transcriptional and Post-Transcriptional Regulation of ESC Characteristics by Core Pluripotency Transcription Factors in Protein-Protein Interaction Networks |
title_full | Synergistic Transcriptional and Post-Transcriptional Regulation of ESC Characteristics by Core Pluripotency Transcription Factors in Protein-Protein Interaction Networks |
title_fullStr | Synergistic Transcriptional and Post-Transcriptional Regulation of ESC Characteristics by Core Pluripotency Transcription Factors in Protein-Protein Interaction Networks |
title_full_unstemmed | Synergistic Transcriptional and Post-Transcriptional Regulation of ESC Characteristics by Core Pluripotency Transcription Factors in Protein-Protein Interaction Networks |
title_short | Synergistic Transcriptional and Post-Transcriptional Regulation of ESC Characteristics by Core Pluripotency Transcription Factors in Protein-Protein Interaction Networks |
title_sort | synergistic transcriptional and post-transcriptional regulation of esc characteristics by core pluripotency transcription factors in protein-protein interaction networks |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149371/ https://www.ncbi.nlm.nih.gov/pubmed/25171496 http://dx.doi.org/10.1371/journal.pone.0105180 |
work_keys_str_mv | AT lileijie synergistictranscriptionalandposttranscriptionalregulationofesccharacteristicsbycorepluripotencytranscriptionfactorsinproteinproteininteractionnetworks AT zhangliangcai synergistictranscriptionalandposttranscriptionalregulationofesccharacteristicsbycorepluripotencytranscriptionfactorsinproteinproteininteractionnetworks AT liuguiyou synergistictranscriptionalandposttranscriptionalregulationofesccharacteristicsbycorepluripotencytranscriptionfactorsinproteinproteininteractionnetworks AT fengrennan synergistictranscriptionalandposttranscriptionalregulationofesccharacteristicsbycorepluripotencytranscriptionfactorsinproteinproteininteractionnetworks AT jiangyongshuai synergistictranscriptionalandposttranscriptionalregulationofesccharacteristicsbycorepluripotencytranscriptionfactorsinproteinproteininteractionnetworks AT yanglei synergistictranscriptionalandposttranscriptionalregulationofesccharacteristicsbycorepluripotencytranscriptionfactorsinproteinproteininteractionnetworks AT zhangshihua synergistictranscriptionalandposttranscriptionalregulationofesccharacteristicsbycorepluripotencytranscriptionfactorsinproteinproteininteractionnetworks AT liaomingzhi synergistictranscriptionalandposttranscriptionalregulationofesccharacteristicsbycorepluripotencytranscriptionfactorsinproteinproteininteractionnetworks AT huajinlian synergistictranscriptionalandposttranscriptionalregulationofesccharacteristicsbycorepluripotencytranscriptionfactorsinproteinproteininteractionnetworks |