Cargando…
SoilGrids1km — Global Soil Information Based on Automated Mapping
BACKGROUND: Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spat...
Autores principales: | Hengl, Tomislav, de Jesus, Jorge Mendes, MacMillan, Robert A., Batjes, Niels H., Heuvelink, Gerard B. M., Ribeiro, Eloi, Samuel-Rosa, Alessandro, Kempen, Bas, Leenaars, Johan G. B., Walsh, Markus G., Gonzalez, Maria Ruiperez |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149475/ https://www.ncbi.nlm.nih.gov/pubmed/25171179 http://dx.doi.org/10.1371/journal.pone.0105992 |
Ejemplares similares
-
SoilGrids250m: Global gridded soil information based on machine learning
por: Hengl, Tomislav, et al.
Publicado: (2017) -
Correction: SoilGrids1km — Global Soil Information Based on Automated Mapping
Publicado: (2014) -
Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions
por: Hengl, Tomislav, et al.
Publicado: (2015) -
Mapping rootable depth and root zone plant-available water holding capacity of the soil of sub-Saharan Africa
por: Leenaars, Johan G.B., et al.
Publicado: (2018) -
Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning
por: Hengl, Tomislav, et al.
Publicado: (2017)