Cargando…
Contrasting Light Spectra Constrain the Macro and Microstructures of Scleractinian Corals
The morphological plasticity of scleractinian corals can be influenced by numerous factors in their natural environment. However, it is difficult to identify in situ the relative influence of a single biotic or abiotic factor, due to potential interactions between them. Light is considered as a majo...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149485/ https://www.ncbi.nlm.nih.gov/pubmed/25170981 http://dx.doi.org/10.1371/journal.pone.0105863 |
_version_ | 1782332765972201472 |
---|---|
author | Rocha, Rui J. M. Silva, Ana M. B. Fernandes, M. Helena Vaz Cruz, Igor C. S. Rosa, Rui Calado, Ricardo |
author_facet | Rocha, Rui J. M. Silva, Ana M. B. Fernandes, M. Helena Vaz Cruz, Igor C. S. Rosa, Rui Calado, Ricardo |
author_sort | Rocha, Rui J. M. |
collection | PubMed |
description | The morphological plasticity of scleractinian corals can be influenced by numerous factors in their natural environment. However, it is difficult to identify in situ the relative influence of a single biotic or abiotic factor, due to potential interactions between them. Light is considered as a major factor affecting coral skeleton morphology, due to their symbiotic relation with photosynthetic zooxanthellae. Nonetheless, most studies addressing the importance of light on coral morphological plasticity have focused on photosynthetically active radiation (PAR) intensity, with the effect of light spectra remaining largely unknown. The present study evaluated how different light spectra affect the skeleton macro- and microstructures in two coral species (Acropora formosa sensu Veron (2000) and Stylophora pistillata) maintained under controlled laboratory conditions. We tested the effect of three light treatments with the same PAR but with a distinct spectral emission: 1) T5 fluorescent lamps with blue emission; 2) Light Emitting Diodes (LED) with predominantly blue emission; and 3) Light Emitting Plasma (LEP) with full spectra emission. To exclude potential bias generated by genetic variability, the experiment was performed with clonal fragments for both species. After 6 months of experiment, it was possible to detect in coral fragments of both species exposed to different light spectra significant differences in morphometry (e.g., distance among corallites, corallite diameter, and theca thickness), as well as in the organization of their skeleton microstructure. The variability found in the skeleton macro- and microstructures of clonal organisms points to the potential pitfalls associated with the exclusive use of morphometry on coral taxonomy. Moreover, the identification of a single factor influencing the morphology of coral skeletons is relevant for coral aquaculture and can allow the optimization of reef restoration efforts. |
format | Online Article Text |
id | pubmed-4149485 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41494852014-09-03 Contrasting Light Spectra Constrain the Macro and Microstructures of Scleractinian Corals Rocha, Rui J. M. Silva, Ana M. B. Fernandes, M. Helena Vaz Cruz, Igor C. S. Rosa, Rui Calado, Ricardo PLoS One Research Article The morphological plasticity of scleractinian corals can be influenced by numerous factors in their natural environment. However, it is difficult to identify in situ the relative influence of a single biotic or abiotic factor, due to potential interactions between them. Light is considered as a major factor affecting coral skeleton morphology, due to their symbiotic relation with photosynthetic zooxanthellae. Nonetheless, most studies addressing the importance of light on coral morphological plasticity have focused on photosynthetically active radiation (PAR) intensity, with the effect of light spectra remaining largely unknown. The present study evaluated how different light spectra affect the skeleton macro- and microstructures in two coral species (Acropora formosa sensu Veron (2000) and Stylophora pistillata) maintained under controlled laboratory conditions. We tested the effect of three light treatments with the same PAR but with a distinct spectral emission: 1) T5 fluorescent lamps with blue emission; 2) Light Emitting Diodes (LED) with predominantly blue emission; and 3) Light Emitting Plasma (LEP) with full spectra emission. To exclude potential bias generated by genetic variability, the experiment was performed with clonal fragments for both species. After 6 months of experiment, it was possible to detect in coral fragments of both species exposed to different light spectra significant differences in morphometry (e.g., distance among corallites, corallite diameter, and theca thickness), as well as in the organization of their skeleton microstructure. The variability found in the skeleton macro- and microstructures of clonal organisms points to the potential pitfalls associated with the exclusive use of morphometry on coral taxonomy. Moreover, the identification of a single factor influencing the morphology of coral skeletons is relevant for coral aquaculture and can allow the optimization of reef restoration efforts. Public Library of Science 2014-08-29 /pmc/articles/PMC4149485/ /pubmed/25170981 http://dx.doi.org/10.1371/journal.pone.0105863 Text en © 2014 Rocha et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Rocha, Rui J. M. Silva, Ana M. B. Fernandes, M. Helena Vaz Cruz, Igor C. S. Rosa, Rui Calado, Ricardo Contrasting Light Spectra Constrain the Macro and Microstructures of Scleractinian Corals |
title | Contrasting Light Spectra Constrain the Macro and Microstructures of Scleractinian Corals |
title_full | Contrasting Light Spectra Constrain the Macro and Microstructures of Scleractinian Corals |
title_fullStr | Contrasting Light Spectra Constrain the Macro and Microstructures of Scleractinian Corals |
title_full_unstemmed | Contrasting Light Spectra Constrain the Macro and Microstructures of Scleractinian Corals |
title_short | Contrasting Light Spectra Constrain the Macro and Microstructures of Scleractinian Corals |
title_sort | contrasting light spectra constrain the macro and microstructures of scleractinian corals |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149485/ https://www.ncbi.nlm.nih.gov/pubmed/25170981 http://dx.doi.org/10.1371/journal.pone.0105863 |
work_keys_str_mv | AT rocharuijm contrastinglightspectraconstrainthemacroandmicrostructuresofscleractiniancorals AT silvaanamb contrastinglightspectraconstrainthemacroandmicrostructuresofscleractiniancorals AT fernandesmhelenavaz contrastinglightspectraconstrainthemacroandmicrostructuresofscleractiniancorals AT cruzigorcs contrastinglightspectraconstrainthemacroandmicrostructuresofscleractiniancorals AT rosarui contrastinglightspectraconstrainthemacroandmicrostructuresofscleractiniancorals AT caladoricardo contrastinglightspectraconstrainthemacroandmicrostructuresofscleractiniancorals |