Cargando…
Testing the accuracy of an observation-based classifier for rapid detection of autism risk
Current approaches for diagnosing autism have high diagnostic validity but are time consuming and can contribute to delays in arriving at an official diagnosis. In a pilot study, we used machine learning to derive a classifier that represented a 72% reduction in length from the gold-standard Autism...
Autores principales: | Duda, M, Kosmicki, J A, Wall, D P |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150240/ https://www.ncbi.nlm.nih.gov/pubmed/25116834 http://dx.doi.org/10.1038/tp.2014.65 |
Ejemplares similares
-
Searching for a minimal set of behaviors for autism detection through feature selection-based machine learning
por: Kosmicki, J A, et al.
Publicado: (2015) -
Use of machine learning to shorten observation-based screening and diagnosis of autism
por: Wall, D P, et al.
Publicado: (2012) -
Voice acoustics allow classifying autism spectrum disorder with high accuracy
por: Briend, Frédéric, et al.
Publicado: (2023) -
Clinical Evaluation of a Novel and Mobile Autism Risk Assessment
por: Duda, Marlena, et al.
Publicado: (2016) -
Sparsifying machine learning models identify stable subsets of predictive features for behavioral detection of autism
por: Levy, Sebastien, et al.
Publicado: (2017)