Cargando…

Insights into the Mechanisms of Absence Seizure Generation Provided by EEG with Functional MRI

Absence seizures (AS) are brief epileptic events characterized by loss of awareness with subtle motor features. They may be very frequent, and impact on attention, learning, and memory. A number of pathophysiological models have been developed to explain the mechanism of absence seizure generation,...

Descripción completa

Detalles Bibliográficos
Autores principales: Carney, Patrick W., Jackson, Graeme D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150362/
https://www.ncbi.nlm.nih.gov/pubmed/25225491
http://dx.doi.org/10.3389/fneur.2014.00162
_version_ 1782332883473530880
author Carney, Patrick W.
Jackson, Graeme D.
author_facet Carney, Patrick W.
Jackson, Graeme D.
author_sort Carney, Patrick W.
collection PubMed
description Absence seizures (AS) are brief epileptic events characterized by loss of awareness with subtle motor features. They may be very frequent, and impact on attention, learning, and memory. A number of pathophysiological models have been developed to explain the mechanism of absence seizure generation, which relies heavily on observations from animal studies. Studying the structural and functional relationships between large-scale brain networks in humans is only practical with non-invasive whole brain techniques. EEG with functional MRI (EEG-fMRI) is one such technique that provides an opportunity to explore the interactions between brain structures involved in AS generation. A number of fMRI techniques including event-related analysis, time-course analysis, and functional connectivity (FC) have identified a common network of structures involved in AS. This network comprises the thalamus, midline, and lateral parietal cortex [the default mode network (DMN)], caudate nuclei, and the reticular structures of the pons. The main component displaying an increase in blood oxygen level dependent (BOLD) signal relative to the resting state, in group studies, is the thalamus while the most consistent cortical change is reduced BOLD signal in the DMN. Time-course analysis shows that, rather than some structures being activated or inactivated during AS, there appears to be increase in activity across components of the network preceding or following the electro-clinical onset of the seizure. The earliest change in BOLD signal occurs in the DMN, prior to the onset of epileptiform events. This region also shows altered FC in patients with AS. Hence, it appears that engagement of this network is central to AS. In this review, we will explore the insights of EEG-fMRI studies into the mechanisms of AS and consider how the DMN is likely to be the major large-scale brain network central to both seizure generation and seizure manifestations.
format Online
Article
Text
id pubmed-4150362
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-41503622014-09-15 Insights into the Mechanisms of Absence Seizure Generation Provided by EEG with Functional MRI Carney, Patrick W. Jackson, Graeme D. Front Neurol Neuroscience Absence seizures (AS) are brief epileptic events characterized by loss of awareness with subtle motor features. They may be very frequent, and impact on attention, learning, and memory. A number of pathophysiological models have been developed to explain the mechanism of absence seizure generation, which relies heavily on observations from animal studies. Studying the structural and functional relationships between large-scale brain networks in humans is only practical with non-invasive whole brain techniques. EEG with functional MRI (EEG-fMRI) is one such technique that provides an opportunity to explore the interactions between brain structures involved in AS generation. A number of fMRI techniques including event-related analysis, time-course analysis, and functional connectivity (FC) have identified a common network of structures involved in AS. This network comprises the thalamus, midline, and lateral parietal cortex [the default mode network (DMN)], caudate nuclei, and the reticular structures of the pons. The main component displaying an increase in blood oxygen level dependent (BOLD) signal relative to the resting state, in group studies, is the thalamus while the most consistent cortical change is reduced BOLD signal in the DMN. Time-course analysis shows that, rather than some structures being activated or inactivated during AS, there appears to be increase in activity across components of the network preceding or following the electro-clinical onset of the seizure. The earliest change in BOLD signal occurs in the DMN, prior to the onset of epileptiform events. This region also shows altered FC in patients with AS. Hence, it appears that engagement of this network is central to AS. In this review, we will explore the insights of EEG-fMRI studies into the mechanisms of AS and consider how the DMN is likely to be the major large-scale brain network central to both seizure generation and seizure manifestations. Frontiers Media S.A. 2014-09-01 /pmc/articles/PMC4150362/ /pubmed/25225491 http://dx.doi.org/10.3389/fneur.2014.00162 Text en Copyright © 2014 Carney and Jackson. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Carney, Patrick W.
Jackson, Graeme D.
Insights into the Mechanisms of Absence Seizure Generation Provided by EEG with Functional MRI
title Insights into the Mechanisms of Absence Seizure Generation Provided by EEG with Functional MRI
title_full Insights into the Mechanisms of Absence Seizure Generation Provided by EEG with Functional MRI
title_fullStr Insights into the Mechanisms of Absence Seizure Generation Provided by EEG with Functional MRI
title_full_unstemmed Insights into the Mechanisms of Absence Seizure Generation Provided by EEG with Functional MRI
title_short Insights into the Mechanisms of Absence Seizure Generation Provided by EEG with Functional MRI
title_sort insights into the mechanisms of absence seizure generation provided by eeg with functional mri
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150362/
https://www.ncbi.nlm.nih.gov/pubmed/25225491
http://dx.doi.org/10.3389/fneur.2014.00162
work_keys_str_mv AT carneypatrickw insightsintothemechanismsofabsenceseizuregenerationprovidedbyeegwithfunctionalmri
AT jacksongraemed insightsintothemechanismsofabsenceseizuregenerationprovidedbyeegwithfunctionalmri