Cargando…

Alzheimer's Disease and HLA-A2: Linking Neurodegenerative to Immune Processes through an In Silico Approach

There is a controversial relationship between HLA-A2 and Alzheimer's disease (AD). It has been suggested a modifier effect on the risk that depends on genetic loadings. Thus, the aims of this study were to evaluate this relationship and to reveal genes associated with both concepts the HLA-A ge...

Descripción completa

Detalles Bibliográficos
Autores principales: Cifuentes, Ricardo A., Murillo-Rojas, Juan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4150521/
https://www.ncbi.nlm.nih.gov/pubmed/25197660
http://dx.doi.org/10.1155/2014/791238
Descripción
Sumario:There is a controversial relationship between HLA-A2 and Alzheimer's disease (AD). It has been suggested a modifier effect on the risk that depends on genetic loadings. Thus, the aims of this study were to evaluate this relationship and to reveal genes associated with both concepts the HLA-A gene and AD. Consequently, we did first a classical systematic review and a meta-analysis of case-control studies. Next, by means of an in silico approach, we used experimental knowledge of protein-protein interactions to evaluate the top ranked genes shared by both concepts, previously found through text mining. The meta-analysis did not show a significant pooled OR (1.11, 95% CI: 0.98 to 1.24 in Caucasians), in spite of the fact that four of the included studies had a significant OR > 1 and none of them a significant OR < 1. In contrast, the in silico approach retrieved nonrandomly shared genes by both concepts (P = 0.02), which additionally encode truly interacting proteins. The network of proteins encoded by APP, ICAM-1, ITGB2, ITGAL, SELP, SELL, IL2, IL1B, CD4, and CD8A linked immune to neurodegenerative processes and highlighted the potential roles in AD pathogenesis of endothelial regulation, infectious diseases, specific antigen presentation, and HLA-A2 in maintaining synapses.